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SUMMARY

Retinitis pigmentosa (RP) and age-related macular
degeneration (AMD) are degenerative blinding
diseases caused by the death of rods and cones,
leaving the remainder of the visual system intact
but largely unable to respond to light. Here, we
show that AAQ, a synthetic small molecule photo-
switch, can restore light sensitivity to the retina and
behavioral responses in vivo in mouse models of
RP, without exogenous gene delivery. Brief applica-
tion of AAQ bestows prolonged light sensitivity on
multiple types of retinal neurons, resulting in synapti-
cally amplified responses and center-surround
antagonism in arrays of retinal ganglion cells
(RGCs). Intraocular injection of AAQ restores the
pupillary light reflex and locomotory light avoidance
behavior in mice lacking retinal photoreceptors, indi-
cating reconstitution of light signaling to brain
circuits. AAQ and related photoswitch molecules
present a potential drug strategy for restoring retinal
function in degenerative blinding diseases.

INTRODUCTION

Inherited degenerative diseases of the retina including retinitis

pigmentosa (RP) affect 1 in 3,000 people worldwide. As differen-

tiation of rods and cones ceases soon after birth in mammals,

disorders resulting in photoreceptor degeneration lead to

a permanent visual deficit. At present, there is no effective treat-

ment for preventing this degenerative process and without some

means of restoring photoreception, patients with advanced RP

face the prospect of irreversible blindness.

Retinal ganglion cells (RGCs) are the sole output neurons of

the retina. Hence, all of the visual information that reaches the

brain is encoded by the spatial and temporal pattern of RGC

action potentials. Several strategies have been advanced to
enable light to alter RGC firing in the absence of rods and cones,

with the goal of restoring visual function after the photoreceptors

are lost (Jiménez et al., 1996; Marc et al., 2003; Punzo and

Cepko, 2007; Strettoi and Pignatelli, 2000). First, biomedical

engineers have developed surgically implanted retinal ‘‘chip’’

prosthetics (Chader et al., 2009; Gerding et al., 2007; Shire

et al., 2009) that can be electronically controlled by an external

camera to enable optical stimuli to trigger RGC firing. Retinal

implants have restored simple shape discrimination to blind

patients (Humayun et al., 2003; Yanai et al., 2007), indicating

that artificial stimulation of RGCs in vivo can create a useful

visual experience. Second, genes encoding optogenetic tools,

including light-activated ion channels (Bi et al., 2006; Lagali

et al., 2008; Tomita et al., 2010), transporters (Busskamp et al.,

2010), or receptors (Caporale et al., 2011; Lin et al., 2008), can

be introduced with viruses to bestow light-sensitivity on retinal

neurons that survive after the natural photoreceptive cells have

degenerated. Expression of optogenetic proteins in RGCs

(Caporale et al., 2011; Tomita et al., 2010), bipolar cells (Lagali

et al., 2008), and remnant cones (Busskamp et al., 2010) can

reinstate light-elicited behavioral responses in mouse models

of RP. Third, embryonic stem cells can be differentiated into

photoreceptor progenitors in vitro (Lamba et al., 2006). Injecting

these progenitors into blind animals results in integration of

photoreceptors in the retina and restoration of some electrical

activity in response to light (Lamba et al., 2009).

Each of these strategies has shown promise for restoring

visual function, but they all require highly invasive and/or irre-

versible interventions that introduce hurdles to further develop-

ment as a therapeutic approach. Implantation of retinal chips

or stem cell-derived photoreceptors requires invasive surgery,

while exogenous expression of optogenetic tools leads to

permanent genetic alterations in retinal neurons. Retinal chip

prosthetics rely on extracellular electrical stimulation of RGCs,

which can be cytotoxic when excessive (Winter et al., 2007).

Stem cell therapies carry potential for teratoma formation

(Chaudhry et al., 2009). Viruses that deliver optogenetic tools

can have off-target effects and may elicit inflammatory

responses (Beltran et al., 2010). While the potential permanence
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of optoelectronic, stem cell, or optogenetic interventions could

be favorable in the absence of complications, any deleterious

effects of these treatments could be very difficult or impossible

to reverse.

Here, we report an alternative strategy for restoring visual

function, based on a small molecule ‘‘photoswitch’’ that bestows

light sensitivity onto neurons without requiring exogenous gene

expression. The photoswitch is injected into the vitreous cavity

of the eye, but unlike the other strategies, it does not require

highly invasive surgical interventions and its actions are revers-

ible. We used acrylamide-azobenzene-quaternary ammonium

(AAQ), a K+ channel photoswitch that enables optical control of

neuronal excitability (Banghart et al., 2009; Fortin et al., 2008).

AAQ was originally thought to conjugate to K+ channels (Fortin

et al., 2008), but recent work shows that the molecule interacts

noncovalently with the cytoplasmic side of the channels, similar

to the mechanism of action of local anesthetics (Banghart et al.,

2009). The trans form of AAQ blocks K+ channels and increases

excitability, whereas photoisomerization to the cis form with

short wavelength light (e.g., 380 nm) unblocks K+ channels and

decreases excitability. Relaxation from cis to trans occurs slowly

in darkness but much more rapidly in longer-wavelength light

(e.g., 500 nm), enabling rapid bi-directional photocontrol of

neuronal firing with different wavelengths.

We show that AAQ confers robust light responses in RGCs in

retinas from mutant mice that lack rods and cones. Moreover,

after a single intraocular injection, AAQ restores light-driven

behavior in blind mice in vivo. Because it is a rapid and reversible

drug-like small molecule, AAQ represents a class of compounds

that has potential for the restoration of visual function in humans

with end-stage photoreceptor degenerative disease.

RESULTS

Imparting Light Sensitivity on rd1 Mouse Retina
with AAQ
We tested whether AAQ can impart light sensitivity on retinas

from 6-month-old rd1mice, a murine model of RP. The homozy-

gous rd1 mouse (rd1/rd1) has a mutation in the gene encoding

the b-subunit of cGMP phosphodiesterase-6, essential for rod

phototransduction. Rods and cones in these mice degenerate

nearly completely within 3 months after birth, leading to a loss

of electrical and behavioral light responses (Sancho-Pelluz

et al., 2008). We placed the rd1 mouse retina onto a multi-elec-

trode array (MEA) that enables simultaneous extracellular

recording from many RGCs (Meister et al., 1994). Before AAQ

application, light generated nomeasurable change in RGC firing.

However, after 30 min of treatment with AAQ, nearly all RGCs

responded to light (Figure 1A). Photosensitization increased

with AAQ concentration (Figure S1; Table S1 available online),

but we used 300 mM for our standard ex vivo treatment. Light

responses slowly diminished but were still robust for >5 hr after

removing AAQ from the bathing medium (Figure S2a). Light

responses could also be detected in three of four recordings

from retinas removed from rd1 mice that had received in vivo

intravitreal AAQ injections 12 hr previously (Figure S2b). The

degree of photosensitivity varied, reflecting inaccurate injection

in the small intravitreal volume of the mouse eye (2–3 ml).
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Most RGCs exhibited an increase in firing rate in response to

380 nm light and a decrease in 500 nm light, opposite to AAQ-

mediated light responses in neurons in culture (Fortin et al.,

2008). To quantify the effects of light, we calculated a photoswitch

index (PI), representing the normalized change in firing rate upon

switching from darkness to 380 nm light. Positive or negative PI

values reflect an increase or decrease, respectively, of firing.

Before AAQ treatment, RGCs had almost no light response

(median PI = 0.02); but after treatment, nearly all were activated

by 380 nm light (median PI = 0.42) (Figure 1B). The rare light

responses before AAQ treatment might result from melanopsin-

containing intrinsically photosensitive RGCs (ipRGCs), which

account for �3% of the RGCs in the adult mouse retina (Hattar

et al., 2002). Significant photosensitization was observed in each

of 21 AAQ-treated retinas. On average, we observed an �3-fold

increase in RGC firing rate in response to 380 nm light, with indi-

vidual retinas showing up to an 8-fold increase (Figure 1C).

AAQ Acts on RGCs, Bipolar, and Amacrine Cells
in rd1 Retinas
We were surprised that 380 nm light stimulated RGC firing

because this wavelength unblocks K+ channels, which should

reduce neuronal excitability. However, since RGCs receive

inhibitory input from amacrine cells, RGC stimulation might be

indirect, resulting from amacrine cell-dependent disinhibition.

To test this hypothesis, we applied antagonists of receptors for

GABA and glycine, the two inhibitory neurotransmitters released

by amacrine cells. Photosensitization of RGCs by AAQ persisted

after adding inhibitors of GABAA, GABAC, and glycine receptors

(Figure 2A), but the polarity of photoswitching was reversed, with

nearly all neurons inhibited rather than activated by 380 nm

light (Figure 2B). These results indicate that photoregulation of

amacrine cells is the dominant factor that governs the AAQ-

mediated light response of RGCs.

After blocking amacrine cell synaptic transmission, the re-

maining light response could result from photoregulation of K+

channels intrinsic to RGCs and/or photoregulation of excitatory

inputs from bipolar cells. To explore the contribution of intrinsic

K+ channels, we obtained whole-cell patch clamp recordings

from RGCs and pharmacologically blocked nearly all synaptic

inputs (glutamatergic, GABAergic, and glycinergic). Depolarizing

voltage steps activated outward K+ currents that were smaller

and decayed more rapidly in 500 nm light than in 380 nm light

(Figure 2C). Comparison of current versus voltage (I-V) curves

shows that the current was reduced by �50% in 500 nm light

(Figure 2D), similar to previous results (Fortin et al., 2008).

However, MEA recordings indicate that photoregulation of

RGC firing was nearly eliminated by blocking all excitatory and

inhibitory synaptic inputs (Figure S3), suggesting that the light

response is driven primarily by photoregulation of upstream

neurons synapsing with RGCs.

To examine directly the contribution of retinal bipolar cells to

the RGC light response, we blocked RGCK+ channels with intra-

cellular Cs+ and added GABA and glycine receptor antagonists

to block amacrine cell inputs. Flashes of 500 nm light triggered

excitatory postsynaptic currents (EPSCs) in RGCs, and 380 nm

light suppressed these events (Figures 2E and 2F). Blocking

glutamate receptors eliminated these events, and bipolar cells



Figure 1. AAQ Imparts Light Sensitivity onto Blind Retinas from rd1 Mice

(A) Multi-electrode recordings from a flat-mounted rd1mouse retina before and after treatment with AAQ (300 mM for 25 min, followed by washout). Top: Raster

plot of spiking from RGCs. Bottom: Average RGC firing rate calculated in 100 ms time bins. Color bars represent illumination with 380 nm (violet) or 500 nm light

(green), separated by periods of darkness (black).

(B) Analysis of photoswitching of the entire population of RGCs from all untreated retinas and all AAQ-treated retinas. Untreated retinas (n = 12) had PI values

near 0, indicating no photoswitching, AAQ-treated retinas (n = 21) had PI values >0, indicating an increase in firing frequency after switching from darkness

to 380 nm light.

(C) AAQ-mediated photosensitivity results from an increase in firing rate in 380 nm light. Average RGC firing rates in untreated retinas and AAQ-treated retinas in

darkness and during the first 5 s in 380 nm light. Note that untreated retinas (n = 12) fail to respond to light, but AAQ-treated retinas have RGCs that increase firing

rate with 380 nm light. Red symbols show median values and error bars represent 95% confidence intervals for untreated and treated retinas (p < 0.0001, Mann-

Whitney test).

See also Figures S1 and S2.
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provide the only known glutamatergic input to RGCs. Hence, we

conclude that inputs from amacrine cells, bipolar cells, and to

a lesser extent, the intrinsic K+ conductances of RGCs, all

combine to shape and amplify the AAQ-mediated RGC light

response.

Spatial Localization and Center-Surround Antagonism
of RGC Light Responses in AAQ-Treated Retina
Visual acuity is determined by the size of receptive fields of

neurons in the visual system. In the healthy retina, the receptive

field of an RGC is defined by the spatial extent of all of the photo-

receptors that influence its activity. By definition, the receptive

fields of RGCs in rd1 mice are eliminated after the photorecep-

tors have degenerated. However because AAQ makes presyn-

aptic neurons light-sensitive, it is possible to measure the spatial

extent of their light-driven influence on RGC firing. While this is

not a conventional measurement of the RGC receptive field, it

does indicate the spatial precision of the AAQ-mediated RGC

light response.
We illuminated AAQ-treated retinas with small spots (60 mm

diameter) of 380 nm light centered on one of the 60 electrodes

in an MEA (Figure 3A). In the example shown in Figure 3A,

upon switching from 500 to 380 nm light, the average RGC

activity increased in the targeted electrode by �81% but not in

the surrounding electrodes. In each of a total of eight targeted

spots from three different retinas, only neurons near the targeted

electrode exhibited a significant increase in firing (median

PI = 0.517; Figure 3B). Since RGCs are detected by only one

electrode and they are spaced 200 mm apart, this puts an upper

limit on the radius of the AAQ-mediated RGC collecting area of

100 mm.

Analysis of electrodes outside the illuminated spot showed

that 380 nm light significant decreased RGC firing. Decreased

firing was detected in electrodes centered at 300, 500, and

700 mm from the mid-point of the targeted electrode (Figure 3C;

Table 1). Hence, RGCs in the center of an illuminated spot are

stimulated, whereas those in a surrounding annulus (from

200 to 800 mm) are inhibited. Inhibition in the surrounding
Neuron 75, 271–282, July 26, 2012 ª2012 Elsevier Inc. 273



Figure 2. Multiple Types of Retinal Neurons

Contribute to the AAQ-Mediated Light

Response of RGCs

(A) Amacrine cell-mediated synaptic inhibition

dominates the RGC light response. MEA recording

with antagonists of GABAA (gabazine; 4 mM),

GABAC (TPMPA; 10 mM), and glycine receptors

(strychnine; 10 mM) is shown. Top: Raster plot of

RGC spiking. Bottom: Average RGC firing rate.

(B) After blocking inhibition, PI values show

a decrease in firing frequency upon switching from

darkness to 380 nm light (n = 11 retinas).

(C) Endogenous K+ channels contribute to the

RGC light response. Whole-cell patch clamp

recording from an RGC. Currents were evoked by

voltage steps from �80 to +40mV in 20mV incre-

ments in 380 nm and 500 nm light. Inhibitory

GABAergic and glycinergic inputs were blocked as

in (A), and excitatory glutamatergic inputs were

blocked with DNQX (10 mM) and AP5 (50 mM).

(D) Photoregulation of endogenous K+ channels

evaluated in steady-state I-V curves obtained in

380 and 500 nm light (n = 5 RGCs). Current is

normalized to themaximal value at +40mV (380 nm

light). Variability among data is expressed as

mean ± SEM.

(E) Bipolar cell-mediated synaptic excitation also

contributes to the RGC light response. Whole-cell

patch clamp recording from an RGC. Blockade of

inhibitory synaptic inputs (as in A) and endogenous

RGC K+ channels (as in C) reveals photoregulation

of EPSC rate. Note the disappearance of EPSCs

after perfusion with glutamate receptor antago-

nists DNQX (10 mM) and AP5 (50 mM). Holding

potential = �60mV.

(F) Average EPSC rate in 380 nm and 500 nm light. Note the significant increase in EPSC rate in 500 nm light (p < 0.05, Mann-Whitney test; n = 9 cells). Red

symbols show median values and error bars represent 95% confidence intervals.

See also Figure S3.
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RGCs implies that a sign-inverting synapse from a laterally-pro-

jecting neuron is involved in transmitting information from the

center illuminated area to the surround. Amacrine cells are

known to form a mutually inhibitory network, making them the

likely source of the inhibitory signal.

Spectral Requirements of AAQ-Mediated Light
Responses
We determined the optimal wavelength for turning off RGC firing

when the AAQ photoswitch is driven from the cis to the trans

configuration. First, a conditioning 380 nm stimulus was used

to turn on firing and then we measured suppression of firing in

response to test flashes of different wavelengths. We found

that 500 nm light is best at suppressing activity (Figure 4A), as

expected from previous results (Fortin et al., 2008). To determine

which wavelengths are best at triggering firing when AAQ photo-

isomerizes from trans to cis, we again applied test flashes of

different wavelengths, but to ensure that the photoswitch started

maximally in the trans configuration, the stimulation protocol

began with a reset flash of 500 nm light followed by a period of

darkness. We found that the optimal wavelength for stimulating

firing was 380 nm under these conditions. However, robust firing

could also be activated with 420 or 460 nm light (Figure 4B), and

even 500 nm light could trigger an increase in firing frequency if
274 Neuron 75, 271–282, July 26, 2012 ª2012 Elsevier Inc.
the preceding dark interval was sufficiently long. The history

dependence of photoswitching is a consequence of the initial

ratio of the cis and trans photoisomers. Starting with all mole-

cules in the trans state, even 500 nm light can increase the frac-

tion of cismolecules. Hence, UV light is not essential for eliciting

retinal responses. We also found that broad spectrum white light

can trigger an increase in firing frequency in RGCs (Figures 4C

and 4D).

We measured the absolute light intensity required to photore-

gulate AAQ-treated retinas from rd1 mice. The threshold inten-

sity required to induce RGC firing was 2.6 3 1015 photons/

cm2/s of 380 nm light (Figure 4E). The RGC firing rate increased

progressively with brighter light, up to 1017 photons/cm 2/s, but

even this intensity did not saturate the response. By comparison,

retinas from rd1 mice expressing ChR2 in bipolar cells (Lagali

et al., 2008) have RGCs that exhibit a firing threshold of 6 3

1015 photons/cm2/s.

Restoring Behavioral Light Responses In Vivo with AAQ
Given that AAQ can bestow photosensitivity onto blind retinas

ex vivo, we asked whether it can confer light-induced behavior

in blind mice in vivo. Although rd1 mice lose all morphologically

recognizable rods and cones, a small fraction of cones with

altered morphology can survive, allowing correct performance



Figure 3. The AAQ-Treated Retina Gener-

ates Spatially Precise Light Responses

(A) Targeted illumination of a portion of the retina

centered on a single MEA electrode (top). The

target (electrode E6) was exposed to 3 s flashes of

alternating 380 and 500 nm light. Spot size =

60 mm in radius, inter-electrode spacing = 200 mm.

Only the targeted electrode records an increase in

RGC firing in response to 380 nm light (bottom).

PI values are color-coded (scale at left) and also

represented by bar height. The red bar is electrode

E6 (PI = 0.812; n = 1 cell), and blue electrodes are

the surround (PI = �0.209; n = 56 cells). Empty

squares are electrodes on which no action

potentials were recorded.

(B) Targeted illumination results from three retinas,

displayed in a box plot. PI values for the target and

the surround RGCs are significantly different from

one another (p < 0.005, Mann-Whitney test).

Whiskers denote 1.5 times the interquartile range

from the 25th and 75th percentile.

(C) Targeted illumination elicits opposite

responses in center and surround RGCs (n = 11

cells and n = 385 cells, respectively, from three

retinas). PI values of RGCs (open circles) as

a function of distance from the target electrode,

displayed in 200 mm bins. The red diamonds indi-

cate the median plus or minus the bootstrapped

95% confidence intervals. See Table 1 for values.
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of a visual discrimination task under some illumination conditions

(Thyagarajan et al., 2010). Rd1 mice also exhibit a pupillary light

reflex (PLR), but this behavior is completely absent from rd1mice

lacking melanopsin, the photopigment found in the small

percentage (�3%) of RGCs that are intrinsically photosensitive

(ipRGCs) (Hattar et al., 2002; Panda et al., 2003). Therefore, we

tested the PLR of adult rd1 mice lacking the melanopsin gene

(opn4�/� rd1/rd1) (Panda et al., 2003). After 3 months of age,

no PLR could be elicited in any of the mice that we tested,

even with the brightest light available (Figure 5A). However, in

a subset of these mice (9 out of 25), intravitreal injection of

AAQ resulted in a substantial PLR, with a maximal pupillary

constriction of�65% as large as wild-type. Control experiments

showed no restoration of the PLR following sham injection of

vehicle alone (n = 4; Figure S4). The AAQ-mediated response

was attributable to the retina, as direct application of AAQ to

the isolated iris in vitro did not produce light-elicited constriction.

In the remaining mice, suboptimal intravitreal placement or

leakage resulting from puncture damage may have reduced

how much AAQ reached the retina, precluding effective

photosensitization.
Table 1. Center and Surround RGC Responses under Targeted

Illumination

Distance (um) No. of Cells Median PI 95% Confidence Interval

Target 11 0.517 0.455 to 0.812

200–400 95 �0.165 �0.239 to �0.090

400–600 143 �0.213 �0.284 to �0.150

600–800 97 �0.256 �0.294 to �0.206

800–1,200 50 �0.296 �0.626 to 0.034
The AAQ-mediated PLR in opn4�/� rd1/rd1mice could be trig-

gered by photopic irradiance levels normally encountered during

daytime, but the PLR threshold was 2 to 3 log units higher than

the normal PLR in wild-typemice (Figure 5B). The AAQ-mediated

PLR was slower than in wild-type mice (see Movie S1), and AAQ

induced some basal pupillary constriction in darkness. Nonethe-

less, these results show that light responses in AAQ-treated

retina can drive brain circuits, leading to a behavioral response

that is absent from untreated blind animals.

We next tested whether locomotory light-avoidance behavior

(Johnson et al., 2010; Kandel et al., 1987) could be restored in

blind opn4�/� rd1/rd1 mice treated with a unilateral intravitreal

injection of AAQ. We placed a mouse into a narrow cylindrical

transparent tube and recorded behavior with an infrared video

camera (Figure 6A). An automated image analysis system was

used to detect the mouse and measure how quickly it moved

away from the illuminated end of the tube, toward the center.

The latency to movement was significantly shorter in light than

in darkness in wild-type mice (n = 13, 26 trials, p < 0.01) but

not in opn4�/� rd1/rd1 mice (n = 7, 14 trials), indicating light

avoidance in the wild-type mice but not in the mutant mice.

AAQ reinstated the light versus dark latency difference,

measured 2 hr after injection (n = 7, 14 trials, p < 0.02), indicating

restoration of light avoidance. At 24 hr after AAQ injection, there

was no difference in latency in light versus darkness, consistent

with dissipation of the AAQ. These results indicate that an active

light-avoidance behavior can be elicited by AAQ following

a single injection into the eye.

Wild-type mice exhibit a decrease in open-field locomotion in

response to light, which corresponds to a decrease in explor-

atory drive (Bourin and Hascoët, 2003). In contrast, rd1 mice
Neuron 75, 271–282, July 26, 2012 ª2012 Elsevier Inc. 275



Figure 4. Spectral and Illuminance Sensitivity of AAQ-Mediated Photocontrol of RGC Firing

(A) Spectral sensitivity of light-elicited suppression of RGC firing. Top: Light stimulation protocol. AAQ was first driven into its cis configuration with 380 nm light

(5 s), and various test wavelengths triggered photoisomerization to the trans configuration. Bottom: PI values reveal the effectiveness of different wavelengths in

suppressing RGC firing (n = 5 retinas). Error bars represent mean ± SEM.

(B) Spectral sensitivity of light-elicited activation of RGC firing. Top: Light stimulation protocol. AAQ was first driven into its trans configuration with 500 nm light

(15 s). After an additional dark period (45 s) various test wavelengths triggered photoisomerization to the cis configuration. Bottom: PI values reveal the effec-

tiveness of different wavelengths in stimulating RGC firing (n = 5 retinas). For (A) and (B), the PI was measured over the first 1 s after applying the test wavelength.

Error bars represent mean ± SEM.

(C) Stimulation of RGC firing in an AAQ-treated retina with white light. Top: Raster plot of spiking from RGCs. Bottom: Average RGC firing rate.

(D) Box plot representation of increased firing rate in white light versus 500 nm. White light significantly increases peak firing rate (p < 0.05, Mann-Whitney test,

n = 5). Whiskers denote 1.5 times the interquartile range from the 25th and 75th percentile.

(E) Light intensity-response relationship for AAQ-treated rd1 mouse retinas exposed to different intensities of 380 nm light. Minimum light intensity needed for

photoswitching is 2.6 3 1015 photons/cm2/s. Error bars represent mean ± SEM.
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exhibit no change in locomotion over at least a 10 min period of

illumination (Lin et al., 2008). In order to determine if AAQ can

support light modulated exploratory behavior in rd1 mice, we

carried out open field experiments. We placed a mouse into
276 Neuron 75, 271–282, July 26, 2012 ª2012 Elsevier Inc.
a circular test chamber and monitored movement during 5 min

in darkness followed by 5 min in 380 nm light. Figures 7A and

7B show an example of the effect of AAQ on one rd1 mouse

(see also Movies S2 and S3). Before AAQ, light had no effect
Figure 5. AAQ Restores the Pupillary Light Reflex

in Mice Lacking All Retinal Photoreceptors
(A) Pupillary light responses to 5.5 3 104 mW/m2 white

light in opn4�/� rd/rdmice, before (left) and 3 hr after (right)

intravitreal injection of AAQ (1 ml of 80 mM in DMSO). Dark

images taken 5 s before light stimulus; light images

represent maximal pupillary constriction during 30 s light

exposure. Images were taken with an infrared-sensitive

camera under infrared illumination.

(B) Irradiance-dependence of pupillary light responses to

white light. Irradiance response for wild-type mice (plotted

as mean ± STD, n = 5) (A) and four opn4�/� rd/rd mice

injected with AAQ (plotted individually: CB;D). Data

were fitted with a three parameter Hill equation.

See also Figure S4 and Movie S1.



Figure 6. AAQ Restores Active Light Avoidance Behavior in Mice

Lacking All Retinal Photoreceptors

(A) Schematic diagram of the locomotory light-avoidance test chamber.

(B) Restoration of light avoidance behavior in opn4�/� rd/rd mice following

AAQ injection. Bars represent mean latency of movement from the ‘‘East’’ to

the ‘‘Center’’ third of the tube (plotted as ± STD).
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on the movement trajectory (Figure 7A) or total distance traveled

(Figure 7B). After AAQ, light caused an almost immediate

decrease in exploratory behavior, quantified as diminished

distance traveled. Average data from eight rd1 mice showed

no light versus dark difference in movement before AAQ (Fig-

ure 7C). However, after AAQ, there was a decrease in movement

that occurred within 30 s of light onset. This decrease was sus-

tained throughout the illumination period. Before AAQ, there was

no statistically significantly change in the speed of locomotion in

light as compared to darkness (Figure 7D), but after AAQ injec-

tion, light caused a significant 40% slowing of locomotion.

Sham injections with vehicle alone elicited no significant change

in light modulated behavior (n = 4, p > 0.6). Further analysis of the

eight mice showed that seven of them exhibited significant light-

evoked slowing of locomotion after AAQ injection (Figure 7E).

After termination of the behavioral test, mice were sacrificed

and retinas were placed on the MEA for electrophysiological
analysis. In five cases, we successfully obtainedMEA recordings

and were able to directly compare the AAQ-mediated photosen-

sitization of the retina ex vivo with the behavioral responses

in vivo. The one mouse that failed to exhibit light-modulated

behavior (mouse A in Figures 7E and 7F) also failed to exhibit

light-sensitive retinal responses. For all of the other four mice,

light-elicited behavior corresponded with a light-elicited change

in firing rate.

Rd1 mice possess ipRGCs, which should respond to the light

used in this behavioral test. However, previous studies (Lin et al.,

2008) show that ipRGCs do not mediate short-term light-elicited

changes in exploratory behavior. Moreover, in our open field

experiments, mice exhibited no light-modulated behavior prior

to AAQ injections, confirming that alone, the ipRGCs are not

sufficient to evoke this behavior.

DISCUSSION

The ultimate goal of vision restoration research is to recreate as

closely as possible the activity of the entire population of RGCs in

response to a natural visual scene. Since only a small fraction of

RGCs are intrisically light-sensitive (Ecker et al., 2010; Panda

et al., 2003), photosensitivity must be conferred artificially by

directly or indirectly making the neurons sensitive to light. Ideally,

the kinetics and absolute sensitivity to light should be equivalent

to natural RGC responses. The healthy retina has a remarkably

broad operating range owing to light-adaptation mechanisms,

so the artificial system should include gain adjustment and range

extension capabilities. Ideally, the system would replicate

normal encoding of contrast and color and highlight movement,

with certain RGCs being directionally selective. All of this should

be accomplished with a minimally invasive and safe technology.

To date, no restorative technology is close to meeting these

criteria, but new developments are providing reason for

optimism.

Broadly, three approaches have been suggested for restoring

visual function to the eye in the absence of rods and cones:

optoelectronic engineering with retinal chip prosthetics; genetic

engineering with viral-mediated delivery of optogenetic tools;

and cellular engineering, with rod or cone progenitors differenti-

ated from stem cells in vitro. We now describe a fourth approach:

photochemical engineering with a small molecule photoswitch.

The following functional considerations suggest that the

photoswitch approach compares favorably with other methods

for restoringvisual functionandoffers somepractical advantages.

Kinetics
AAQ-mediated retinal light responses are rapid. MEA recordings

show that the median response latency of RGC spiking is 45 ms

in the AAQ-treated rd1 mouse retina, compared to �50 ms

(Farrow and Masland, 2011) to several hundred ms (Carcieri

et al., 2003) for photopic light responses from RGCs in wild-

type retina. Retinal chips electrically stimulate RGCs directly,

and therefore can elicit spikes with latencies of several millisec-

onds. For optogenetic tools, depending onwhich retinal cell type

expresses the tool, the response latency of RGCs ranges from

several milliseconds to 150 ms (Bi et al., 2006; Busskamp

et al., 2010; Lagali et al., 2008). Stem cell-based therapies would
Neuron 75, 271–282, July 26, 2012 ª2012 Elsevier Inc. 277



Figure 7. AAQ Restores Light-Modulated

Locomotor Behavior in an Open-Field Test

(A) Paths traveled by an rd1 mouse before and

after injection with AAQ in darkness and with

380 nm illumination.

(B) Cumulative distance traveled by the mouse in

darkness and in 380 nm light, before and after

AAQ.

(C) Average cumulative distance traveled of all

mice in darkness and 380 nm light, before and after

AAQ. Closed squares represent time spent in

darkness while open squares represent time spent

in 380 nm light. (mean ± SEM, n = 8).

(D) Mean locomotory velocity in light normalized to

basal velocity in darkness. Velocity decreases

significantly in light (n = 8, p < 0.0006).

(E) Light evoked change in the velocity of each of

the eight mice before and after AAQ. The red line

shows the mean light evoked change before and

after AAQ.

(F) Light-induced behavior is correlated with the

light-induced change in firing rate. Data were from

the five mice for which both in vivo behavioral

measurement and ex vivo retinal MEA recordings

were obtained (as labeled a–e in panel E). The

light-induced percent change in firing rate was

calculated from the aggregate light response for all

units recorded with the MEA upon switching from

darkness to 380 nm light. The light-induced

behavior represents percent change in velocity

upon switching from darkness to 380 nm light.

See also Movies S2 and S3.
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presumably restore wild-type kinetics, assuming the differenti-

ated rods and cones have full function.

Sensitivity
MEA recordings in vitro and PLR measurements in vivo indicate

that the AAQ-treated rd1 mouse retina responds under bright

photopic conditions, comparable to levels achieved in natural

outdoor illumination. This is similar to light sensitivity conferred

onto RGCs by optogenetic tools (Bi et al., 2006; Thyagarajan

et al., 2010). Exogenous expression of NpHR in cone remnants

can result in higher light sensitivity (Busskamp et al., 2010).

However, it is unclear whether many patients with advanced

RP have sufficient cone remnants to allow this to be a broadly

applicable approach (Milam et al., 1998). High sensitivity can

also be conferred by exogenously expressing melanopsin in

RGCs that are not normally light-sensitive (Lin et al., 2008), but

the responses are variable and slow (on the order of seconds).

Stem cell-based therapies in theory might recapitulate the

wild-type sensitivity of rods and cones. However, the human

retina normally contains >100,000,000 rods and cones, and
278 Neuron 75, 271–282, July 26, 2012 ª2012 Elsevier Inc.
whether a significant fraction can be

restored with stem cells remains unclear.

Spatial Resolution and Extent
of Retinal Functional Restoration
AAQ-mediated retinal responses have

a high spatial resolution. Our spot illumi-
nation experiments places a 100 mm radius upper limit on the

AAQ-mediated receptive field size. Amacrine cells, which

predominate in driving RGC responses, can project over several

hundred mm, but mutual inhibition between these cells presum-

ably spatially constrains RGC responses to a smaller area.

Because AAQ is a diffusible small molecule, in principle it should

reach the entire retina and confer light sensitivity on all RGCs. In

practice, we observed robust light responses in almost all RGCs

when AAQ was applied in vitro, but intravitreal injections in vivo

were less effective, with only 25%–36% of injections resulting

in behavioral responses to light. Drug delivery via intravitreal

injections in mice can be unreliable because of the very small

vitreal volume (20 ml), which is 250-fold less than the vitreal

volume of the human eye (5.5 ml). Further experiments using

animals with larger vitreal volumes are needed to better test

and optimize the effectiveness of intravitreal AAQ administration.

In contrast to the relatively high spatial resolution that could be

conferred by AAQ, the spatial resolution of a retinal chip is limited

by the relatively large size of the stimulating electrodes and the

spread of current emanating from each electrode. While the
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healthy human retina contains �1.2 million RGCs, current retinal

chips have 16–64 electrodes spaced 100–200 mm apart (Winter

et al., 2007). Chips with electrodes more densely packed exhibit

crosstalk between electrodes, limiting their effectiveness. At

present, the highest resolution that could be provided by retinal

chip stimulation is several orders of magnitude lower than the

theoretical limits imposed by RGC density in the macula, the

region crucial for high-acuity vision. The area of RGC stimulation

is limited by the physical size of the chip implant, which typically

covers only the central 20 degrees of vision in the macula

(Chader et al., 2009). Larger chips are possible, but there are

challenges in power delivery and achieving stable adherence

to the retina.

Similar to photoswitches, the spatial resolution conferred by

optogenetic tools is defined by the size of the cell type targeted

for expressing a given light-activated protein. In principle, the

smaller the cell type and the more densely they are packed

together, the higher the spatial resolution. In practice, viral trans-

duction with current vectors has resulted in expression of opto-

genetic tools in a minority of targeted cells (e.g., �5% of bipolar

cells in mice [Lagali et al., 2008] and 5%–10% of RGCs in

marmosets [Ivanova et al., 2010]), but it is possible that new viral

vectors will be developed that improve transduction efficiency

(Vandenberghe et al., 2011). Viral transduction of NpHR has

resulted in more efficient transduction (50%–75%) of remnant

cones in blind mice (Busskamp et al., 2010), but this approach

is only appropriate for the few patients thought to possess

remnant cones. Viral transduction of cones requires subretinal

injection, which involves local detachment of a portion of the

retina from the underlying retinal pigment epithelium. Effective

viral gene transfer is limited to the detached area (Hauswirth

et al., 2008).

Stem cell approaches offer the potential for greater spatial

resolution, but this is dependent on having a high density of

differentiated photoreceptor cells that form functional and

anatomically correct synapses with appropriate retinal neuron

partners, and at present, only a very low density of cells has

been achieved (Lamba et al., 2009).

ON and OFF Retinal Output Channels
Optogenetic tools have the advantage of being genetically-

targetable to particular types of neurons to generate the appro-

priate stimulation or inhibition of firing, for example to ON- or

OFF-RGCs (Busskamp et al., 2010; Lagali et al., 2008). More-

over, ChR2 and NpHR can be co-expressed in the same RGC

and trafficked to different compartments to restore antagonistic

center-surround responses (Greenberg et al., 2011). In contrast,

all RGCs in AAQ-treated retina respond with the same polarity

light response. While this pattern of responsiveness is different

than the normal retina, it may not preclude a useful visual expe-

rience. Behavioral studies in primates demonstrate that the

selective pharmacological blockade of ON neurons does not

severely impair recognition of shapes or detection of light decre-

ments (Schiller et al., 1986). Moreover, in RP patients, electronic

retinal prosthetics can restore shape recognition, even though

the devices stimulate ON- and OFF-RGCs indiscriminately

(Sekirnjak et al., 2009). Hence, while two channels of visual

information flow are important for normal vision, simultaneous
activation of ON- and OFF-pathways is sufficient for visual

perception. AAQ treatment enables RGCs surrounding an illumi-

nated area to respond with the opposite polarity to those in the

center. Since all RGCs respond with the same polarity light

response to full-field illumination (Figure 1A), the opposite center

versus surround responses to spot illumination suggests that

inhibitory neurons that project laterally invert the sign of the

response. It seems likely that the opposite center versus

surround responsewould enhance perception of spatial contrast

and facilitate edge detection in downstream visual regions of the

brain. But ultimately, the evaluation of the quality of images

produced by photoswitch activation of retinal cells will require

study in primates or human patients.

Spectral Sensitivity
In AAQ-treated retinas, RGCs respond most strongly to short

wavelength light, consistent with the photochemical properties

of the molecule (Fortin et al., 2008). Although 380 nm light is

optimal for enhancing firing frequency, longer wavelengths (up

to 500 nm) can still generate excitatory light responses, reflecting

the spectral range of trans to cis azobenzene photoisomeriza-

tion. This is important, because unlike in the mouse, the human

lens minimally transmits 380 nm light (Kessel et al., 2010).

Newly-developed red-shifted azobenzene derivatives allow K+

channel regulation with even longer wavelengths of light and

chemical modification of the azobenzene moiety results in

compounds with improved quantum efficiency (Mourot et al.,

2011). Ideally, second-generation AAQ derivatives would enable

photostimulation of the retina with intensities and wavelengths

experienced during normal photopic vision. Alternatively,

a head-mounted optoelectronic visual aid (Degenaar et al.,

2009) designed to intensify and transform the palette of visual

scenes to a blue-shifted wavelength could enhance the effec-

tiveness of AAQ and related agents. Such a device might also

allow switching of individual RGCs ON and OFF by rapid modu-

lation of shorter- and longer-wavelength light.

Except for some of the optogenetic tools, the other vision

restoration methods pose no particular spectral challenges.

NpHR and ChR2 respond optimally to 580 and 470 nm light,

respectively (Nagel et al., 2003; Zhang et al., 2007), but newly

discovered red-shifted homologs (Govorunova et al., 2011)

expand the toolkit for potential use for photosensitizing retinal

neurons. Since they are driven by images captured by an

external camera, retinal chip prosthetics can be engineered to

operate over the entire visual spectrum. Similarly, assuming

stem cell-derived photoreceptors express the full complement

of cone opsins, these should be responsive to a broad range

of wavelengths.

Invasiveness, Safety, and Reversibility
The phototswitch approach has the advantage of being relatively

noninvasive and readily reversible. We envision photoswitch

molecules being administered therapeutically by intravitreal

injection, a safe and frequent procedure for treating macular

degeneration with anti-vasoproliferative agents. Because AAQ

photosensitization dissipates within 24 hr, it may be possible

to titrate the most effective dose with repeated intravitreal injec-

tions. The reversibility of AAQ will allow for ‘‘upgrades’’ as newer
Neuron 75, 271–282, July 26, 2012 ª2012 Elsevier Inc. 279
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agents become available, perhaps with improved spectral or

kinetic properties. Longer-term therapy would require an

extended release formulation. We estimate that a several month

supply of AAQ could be packaged into an intravitreal device like

those currently used for long-term steroid treatment of ocular

inflammation (London et al., 2011).

In contrast, retinal chip prosthetics require invasive intraocular

surgery. Optogenetic treatment of remnant cones and stem cell

therapy both require subretinal injection, a risky procedure that

begins with iatrogenic retinal detachment, which could further

damage the retina. These three approaches are essentially irre-

versible. Should they produce undesired effects (such as chronic

photophobia or disturbing visual sensations) there is no ready

means for reversal of either stem cell implantation or gene

therapy, and removal of chip prosthetics would require addi-

tional significant surgery.

Both retinal chip prosthetics and human gene replacement

therapy have received investigational new device/drug status

and have been tested in human patients under research proto-

cols (Ahuja et al., 2011; Benav et al., 2010) without significant

toxicity. However, microbial optogenetic tools would require

trans-species gene therapy, which is unprecedented. Viral

gene expression in the eye can elicit late-onset inflammation,

indicating an immune reaction (Beltran et al., 2010). Because

the unitary conductance of ChR2 and NpHR is quite small

(Feldbauer et al., 2009; Sjulson and Miesenböck, 2008; Zhang

et al., 2007), photosensitivity requires very high levels of exoge-

nous expression, raising concerns about an immune response to

the microbially-derived protein or cytotoxicity. While long-term

safety of AAQ or similar compounds will require toxicology

studies, to date, we have not seen acute toxicity of AAQ on

neural function in vitro (Fortin et al., 2008) or in vivo (Figure S2).

The pathway for evaluating photoswitch compounds for toxicity

is straightforward and will mirror those that have been followed

for other approved, intravitreal agents.

Finally, in addition to its potential clinical use, AAQ has utility as

a scientific tool for understanding normal retinal function and

development. Using AAQ, the firing activity of single cells or

small regions of the retina can be controlled with high temporal

and spatial resolution. This may be useful for better under-

standing information processing by the retina and for studying

developmental plasticity in animals before rods and cones are

functional (Huberman et al., 2008). AAQ-mediated photocontrol

of retinal neurons also provides a unique way to investigate

circuit remodeling after the rods and cones have degenerated

in mouse models of RP (Marc et al., 2003).
EXPERIMENTAL PROCEDURES

Animals

Wild-type mice (C57BL/6J strain, Jackson Laboratories) and homozygous rd1

mice (C3H/HeJ strain, Charles River Laboratories) >3 months old were used

for the experiments. All animal use procedures were approved by the UC

Berkeley or University of Washington Institutional Animal Care and Use

Committee (see Supplemental Experimental Procedures).

Electrophysiology and Pharmacology

Mouse retinaswere dissected and kept in physiological saline at 36�C contain-

ing (in mM) 119 NaCl, 2.5 KCl, 1 KH2PO4, 1.3 MgCl2, 2.5 CaCl2, 26.2 NaHCO3,
280 Neuron 75, 271–282, July 26, 2012 ª2012 Elsevier Inc.
and 20 D-glucose, aerated with 95% O2/5% CO2. For extracellular recording,

the retina was placed ganglion cell layer down onto a multielectrode array

system (model number MEA 1060-2-BC, Multi-Channel Systems).

The MEA electrodes were 30 mm in diameter and arranged on an 83 8 rect-

angular grid. Extracellular spikes were high-pass filtered at 200 Hz and digi-

tized at 20 kHz. A spike threshold of 4SD was set for each channel. Typically,

each electrode recorded spikes from one to three RGCs. Principal component

analysis of spike waveforms was used for sorting spikes generated by indi-

vidual cells (Offline Sorter; Plexon). Only cells with interspike intervals of

<1 ms were included in the analysis.

Borosilicate glass electrodes of 6–11 MU were used for whole-cell voltage-

clamp recordings. Current records were low-pass filtered at 2 kHz. For

measuring voltage-gated K+ currents, electrodes contained (in mM) 98.3 K+

gluconate, 1.7 KCl, 0.6 EGTA, 5 MgCl2, 40 HEPES, 2 ATP-Na, and 0.3 GTP-

Na (pH = 7.25). For recording glutamatergic EPSCs, electrodes contained

(in mM) 125 Cs+ sulfate, 10 TEA-Cl, 5 EGTA, 0.85 MgCl2, 10 HEPES,

2 QX-314, and 4 ATP-Na2 (pH = 7.25). Neurotransmitter receptor antagonists

were used to evaluate synaptic contributions of different retinal neurons to

RGC light responses (see Supplemental Experimental Procedures).

Light Stimulation

In MEA recordings, we used a 100 Wmercury arc lamp filtered through 380 or

500 nm narrow-pass filters (Chroma, Inc.) and switched wavelengths with an

electronically-controlled shutter and filter wheel (SmartShutter, Sutter Instru-

ments). Unless otherwise indicated, the standard incident light intensity at

the retina was 13.4 mW/cm2 (2.56 3 1016 photons/cm2/s) for 380 nm and

11.0 mW/cm2 (2.77 3 1016 photons/cm2/s) for 500 nm.

PLR Measurement

Micewere sedatedwith an intraperitoneal injection of ketamine (6.7mg/ml) and

xylazine (0.45 mg/ml) in saline. A glass micropipette was inserted through the

sclera into the vitreous cavity to inject a 1 ml bolus of AAQ (80 mM in a saline

solution containing 40% DMSO).

Videos of pupillary light responses of mice were recorded before and 3 hr

after AAQ injection. White light was derived from halogen dissecting lamp,

and intensity was controlled with neutral density filters. Animals were dark-

adapted for at least 20min prior to testing. An infrared (IR) illuminator and video

camera (focused 15 cm from the objective) was used to measure pupil dilation,

as described (Van Gelder, 2005).

Locomotory Light Avoidance

Wild-type or opn4�/� rd/rdmice injected with 80 mM AAQ were dark-adapted

and placed into a transparent tube. The tube was illuminated with IR light and

mouse movement was recorded with an IR video camera and stored for offline

analysis. During testing, the face of the mouse was illuminated with 385 nm

light (log irradiance 15.7) and at 5 s intervals flashes of 480 nm light (log irradi-

ance 15.2) were superimposed. For each mouse, we recorded position in the

tube preinjection, and 2 hr and 24 hr postinjection. Analysis was conducted

with automated image-analysis software.

Open-Field Test

Rd1 mice were placed in a 190 mm 3 100 mm circular UV-transparent

chamber. The chamber was surrounded by six panels of 380 nm LEDs

(Roithner Laserteknik), providing uniform illumination with a light intensity

of �7 mW/cm2.

Themice were dark-adapted in their cages for 1 hr prior to each experiment.

The mice were placed in the experimental chamber and allowed to acclimate

for 5 min. The behavior was then recorded using an IR sensitive video camera

(Logitech C310) for 5 min in darkness under IR illumination. After 5 min, the

chamber was illuminated by the 380 nm LEDs, and behavior was monitored

for an additional 5 min. The apparatus was cleaned and thoroughly dried prior

to each experiment.

After the open-field test, each mouse was given an intravitreal injection of

AAQ (20 mM AAQ, 9:1 saline: DMSO) and were allowed to recover for �6 hr

on a heating pad with open access to food and water in their cage located

in the dark room followed by a second round of behavioral testing. The videos

were analyzed utilizing motion tracking video analysis software (Tracker) in
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order to quantify the average velocity of the mice, the trajectory of motion

throughout the test, and the total distance traveled.

Data Analysis and Statistics

Light-elicited changes in firing rate during test flashes were normalized with

respect to initial firing rate and expressed as a PI, defined as follows: PI =

(test firing rate – initial firing rate) / (test firing rate + initial firing rate).

Relative pupillary light responses were calculated as 1 � (pupil area

minimum during thirty seconds of the light stimulus) / (pupil area minimum

during five seconds preceding the stimulus). Relative response data for wild-

type and opn4�/� rd/rd mice were fitted with a three parameter Hill equation

(SigmaPlot, Systat Software, Inc.). Data are expressed asmean ± SEM, unless

otherwise indicated. The p values for open-field experiments were calculated

using the two tailed unpaired Students t test.

Latencies were calculated for every cell with a PI greater than 0.011, the

upper median confidence interval PI of our control experiments (n = 13 retinas;

n = 409 cells). For each cell, firing rate was averaged over the first two light

periods (dark and 380 nm light), with a 10 ms bin size. Basal firing rate was

calculated from theuppermedianconfidence interval in 500nm light.Response

latencywas then calculated as the timedifference between the onset of 380 nm

light and the first bin with a firing rate greater than the cell’s basal activity. The

median response latency was 45 ms (n = 10 retinas; n = 368 cells).

All statisticswereperformedwithMATLAB (Mathworks) algorithms.Distribu-

tionswere first tested for normality using the Shapiro-Wilk test. For non-normal

distributions, the Wilcoxon rank sum test was used for pairwise comparisons.

The 95% confidence intervals for medians were generated by resampling the

original distributions and applying the bias-corrected percentile method (Efron

and Tibshirani, 1986). Results with p < 0.05 were considered significant.

For all box plots, box limits represent the 25th and 75th percentile, respec-

tively. The red line represents themedian andwhiskers denote 1.5 times the in-

terquartile range from the limits of the box. Outliers are marked by red + signs.

SUPPLEMENTAL INFORMATION

Supplemental Information includes four figures, two tables, Supplemental

Experimental Procedures, and three movies and can be found with this article

online at http://dx.doi.org/10.1016/j.neuron.2012.05.022.
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