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Toward a more nuanced 
understanding of probability 
estimation biases
Fallon Branch  and Jay Hegdé *

Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta 
University, Augusta, GA, United States

In real life, we often have to make judgements under uncertainty. One such judgement 
task is estimating the probability of a given event based on uncertain evidence for the 
event, such as estimating the chances of actual fire when the fire alarm goes off. On 
the one hand, previous studies have shown that human subjects often significantly 
misestimate the probability in such cases. On the other hand, these studies have 
offered divergent explanations as to the exact causes of these judgment errors (or, 
synonymously, biases). For instance, different studies have attributed the errors to the 
neglect (or underweighting) of the prevalence (or base rate) of the given event, or 
the overweighting of the evidence for the individual event (‘individuating information’), 
etc. However, whether or to what extent any such explanation can fully account for 
the observed errors remains unclear. To help fill this gap, we studied the probability 
estimation performance of non-professional subjects under four different real-world 
problem scenarios: (i) Estimating the probability of cancer in a mammogram given the 
relevant evidence from a computer-aided cancer detection system, (ii) estimating the 
probability of drunkenness based on breathalyzer evidence, and (iii & iv) estimating 
the probability of an enemy sniper based on two different sets of evidence from a 
drone reconnaissance system. In each case, we quantitatively characterized the 
contributions of the various potential explanatory variables to the subjects’ probability 
judgements. We found that while the various explanatory variables together accounted 
for about 30 to 45% of the overall variance of the subjects’ responses depending on 
the problem scenario, no single factor was sufficient to account for more than 53% 
of the explainable variance (or about 16 to 24% of the overall variance), let alone all 
of it. Further analyses of the explained variance revealed the surprising fact that no 
single factor accounted for significantly more than its ‘fair share’ of the variance. Taken 
together, our results demonstrate quantitatively that it is statistically untenable to 
attribute the errors of probabilistic judgement to any single cause, including base rate 
neglect. A more nuanced and unifying explanation would be that the actual biases 
reflect a weighted combination of multiple contributing factors, the exact mix of 
which depends on the particular problem scenario.
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Introduction

In everyday life, ordinary people and trained professionals alike often encounter situations 
where they must estimate the probability of an event using imperfect evidence for the event. If 
the lawn is wet in the morning, what are chances that it rained during the previous night (Pearl, 
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1988)? What is the probability that there is an intruder in your yard if 
the dog barks? If someone is positively identified in a police lineup, 
how likely is it that this person is the actual culprit? What are the 
chances that the patient actually has cancer when a physician 
diagnoses one? Obviously, errors in estimating these probabilities can 
have significant real-world consequences.

A large number of previous studies have examined how well human 
subjects solve this problem in a wide variety of contexts (Kahneman and 
Tversky, 1973; Eddy, 1982; Kahneman et  al., 1982; Fischhoff and 
Bar-Hillel, 1984; Thompson and Schumann, 1987; Bar-Hillel, 1991; 
Koehler, 1996; Villejoubert and David, 2002; Raacke, 2005; Kalinowski 
et al., 2008; Mandel, 2014; Raab and Gigerenzer, 2015; Dahlman et al., 
2016). While these studies understandably vary in the exact task they 
used, they typically have the following design: The subjects are presented 
with a problem scenario, including the actual binary outcome (e.g., a 
patient is positively diagnosed with cancer or not) and the three 
underlying probabilistic factors: (i) true positive rate of the diagnosis, i.e., 
the probability that the patient actually has cancer given a positive 
diagnosis, (ii) false positive rate, the patient does not actually have cancer, 
and the diagnosis was a ‘false alarm’, and (iii) the prevalence, or base rate, 
of cancer in the given patient population. The subjects are then asked to 
estimate the actual probability of the outcome given the evidence for the 
outcome (e.g., probability that the patient actually has cancer given the 
diagnosis). The studies then compare the subjects’ probability estimates 
with the corresponding theoretically expected probabilities (see General 
Methods below for technical details).

Using this general approach, previous studies have consistently 
found that human subjects substantially misestimate the probabilities. 
That is, the subjects’ estimates typically deviate substantially from the 
theoretically expected probabilities (Eddy, 1982; Kahneman et al., 
1982; Koehler, 1996; Mandel, 2014; Raab and Gigerenzer, 2015). 
Actually, for most real-world scenarios where the base rate is low, the 
subjects tend to overestimate the probability (Eddy, 1982; Kahneman 
et al., 1982; Koehler, 1996; Mandel, 2014; Raab and Gigerenzer, 2015).

An obvious next question is why. About this, previous studies have 
offered widely differing explanations: One longstanding view has been 
that these errors arise because the subjects attach too little weight to (or 
‘underweight’, or neglect) the underlying prevalence, or base rate, of 
the event (Kahneman and Tversky, 1973; Fischhoff and Bar-Hillel, 
1984; Bar-Hillel, 1991). This is why these judgements have been 
referred to as base rate fallacy, base rate neglect, or base rate bias 
(Kahneman and Tversky, 1973; Fischhoff and Bar-Hillel, 1984; 
Thompson and Schumann, 1987; Koehler, 1996; Dahlman et al., 2016). 
Some studies have also attributed the judgement errors to overweighting 
(i.e., attaching too much importance to) the evidence for a given 
individual event (or ‘individuating’ information; Kahneman and 
Tversky, 1973; Bar-Hillel, 1980; Kahneman and Tversky, 1982); the 
inverse fallacy (Villejoubert and David, 2002; Raacke, 2005; Kalinowski 
et al., 2008); and the so-called ‘miss rate neglect’, which actually refers 
to the neglect of false positive rates (Dahlman et al., 2016). On the one 
hand, few studies have explicitly claimed that any of these individual 
causes fully account for all of the observed errors. For instance, even 
those studies that attribute the estimation errors to base rate neglect 
stop short of explicitly offering base rate neglect as the sole explanation. 
On the other hand, it remains unclear as to whether and to what extent 
base rate neglect or any other aforementioned cause can, by itself fully 
account for the empirically observed errors.

The present study seeks to help fill this gap by focusing on a simple, 
straightforward question: When subjects estimate the probability of an 

event using the aforementioned established task paradigm, how much do 
various predictor variables contribute to the subjects’ estimated 
probabilities? We  addressed this question using multiple different 
problem scenarios, and replicated the aforementioned biases in each case. 
We then quantitatively evaluated the extent to which the various potential 
causes contributed to the observed biases in each case. While we make no 
claims that our findings are the final word on this topic (see Discussion), 
we do show that there are principled reasons to call into question the 
prevailing explanations of what causes the observed biases.

General methods

Participants

The present study consisted of four mutually independent 
experiments. All procedures used in each experiment were approved in 
advance by the Institutional Review Board (IRB) of Augusta University, 
Augusta, GA, United States, where the experiments were carried out. 
Subjects were recruited using IRB-approved ads posted on various 
campus sites. All the subjects who participated in this research were adult 
volunteers with normal or corrected-to-normal vision, and provided 
informed consent prior to participating in the study. All were 
non-professional subjects, in the sense that none of the subjects had any 
known expertise in the task used in any of the four experiments, and that 
no subject was recruited, included, or excluded based on their education, 
training, or expertise. A total of 23 different subjects (mean age, 22.23 years 
±4.23 [SD], excluding one subject whose age was not available; 16 women 
and one non-binary person) participated in this study. Some subjects 
participated in more than one experiment (see Supplementary material).

Procedure

As noted above, accurately judging the probability of an actual 
outcome or event A (e.g., actual cancer) given binary evidence B for 
the event (e.g., diagnosis of cancer) requires one to jointly evaluate the 
following four pieces of information:

 1. The prevalence, or base rate p(A) of the event,
 2. The true positive rate, i.e., hit rate or p(B|A), which denotes the 

probability of observing the evidence. B given that event A has 
actually occurred,

 3. The false positive rate, i.e., false alarm rate, p(B|-A), which 
denotes the probability of observing the evidence B given that 
event A has not actually occurred, and

 4. Whether or not the evidence indicates the event has occurred, 
i.e., B = 1 or B = 0. Given the aforementioned four pieces of 
information, the expected probability of the event A given that 
the evidence for the event had been observed, i.e., B = 1, is 
precisely specified by the Bayesian formula

 
p AB p A p B A p A p B A p A p B A| | | |� � � � � � ��� �� � � � � � �� � �� ��� ��/ .

 (1a)

The expected probability that the underlying event has not 
occurred given that evidence for the event has not been observed, i.e., 
B = 0, is given by
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We used the above equations to calculate the theoretically 
expected probability for each given combination of input values for 
the equations (Eddy, 1982; Raab and Gigerenzer, 2015). It is important 
to emphasize, however, that our study neither required the subjects to 
estimate the probabilities in this fashion, nor did it assume that they 
did. That is, our study neither required the subjects to carry out 
mathematical calculations in their heads, nor assumed that this is how 
subjects do the task at hand.

Because the present study aimed to characterize the factors that 
underlie previously reported errors in probability estimation, 
we needed to reproduce the underlying errors in our study. For this 
reason, we simply adopted the task paradigm used in the influential 
study by Eddy (2005) and many others since [for a review, see Koehler, 
1996]. Note that this study did not aim to, nor does it claim to, address 
the so-called ‘ecological validity’ of this task paradigm (Spellman, 1996).

Task paradigm

During each trial, subjects were simultaneously given the above 
four items of information on a computer screen. For instance, in the 
context of Experiment 1 below, p(A) was the base rate of breast cancer; 
p(B|A) and p(B|-A) were the hit and false-alarm rates of a hypothetical 
CAD (computer-assisted diagnosis) system, and B was the binary 
decision of the system (see the Methods under the individual 
experiments below for details).

The meaning of each term was explained to the subjects interactively 
using both written and verbal explanations. We interactively ascertained 
that the subjects accurately understood the meanings of the terms prior 
to proceeding with the trials. Subjects were not provided any information 
whatsoever about the expected probabilities or approaches, Bayesian or 
otherwise, to carrying out the task.

Using only the information provided, subjects had to estimate, 
using a mouse-driven on-screen slider, the percent chance that the 
given event had actually occurred (also see individual experiments 
below). Subjects were afforded ad libitum opportunity to view the 
on-screen information and enter their response. They received 
no feedback.

The various rates and probabilities were presented both as 
fractions of 1 (e.g., 0.005) and as the corresponding ‘natural’ 
frequencies (e.g., 5 in 1000). This is because previous studies (Hoffrage 
and Gigerenzer, 1998; Hoffrage et al., 2015), and our preliminary work 
(Sevilla and Hegdé, 2017), have shown that some subjects are more 
comfortable with natural frequencies. Before the actual data collection, 
subjects underwent practice trials until they indicated they were fully 
familiar with all aspects of the task. The data from the practice trials 
were discarded.

Data analysis

We analyzed the data using scripts custom-written in the R 
language (R_Core_Team, 2019). We carried out parametric statistical 
tests of significance where appropriate, and randomization-based tests 

of significance (Manly, 2007) otherwise. Where necessary, 
we corrected for multiple comparisons using the false discovery rate 
(FDR) method (Benjamini and Hochberg, 1995).

Power analyses

These analyses were carried out using the R library pwr. Before 
initiating the present study, we carried out a priori power analyses to 
determine the subject recruitment target. To do this, we used the 
empirically observed fit of the data from a pilot study (Branch et al., 
2022) as the expected fit of the model (see below), and calculated the 
total number of trials (pooled across all subjects). The results indicated 
that at least 63 trials (pooled across all subjects and repetitions) would 
be needed to achieve a statistical power of 0.90. A posteriori power 
analyses using the actual data indicated that our data achieved a power 
of >0.95 for the regression analyses in each of the four experiments in 
this study.

Generalized linear mixed modeling

We used GLMM to determine the contribution of the various 
predictor variables to the subjects’ reported probabilities. GLMM is 
the appropriate modeling approach when the predictor variables are 
‘mixed’, in that one or more variables are factorial or categorical (e.g., 
the binary decision of the system, in our case), and others are 
continuous (e.g., base rate; Dean and Nielsen, 2007; Berridge and 
Crouchley, 2011; Fox and Fox, 2016). GLMM has been used 
extensively for this purpose in psychological research (Dean and 
Nielsen, 2007; Berridge and Crouchley, 2011; Fox and Fox, 2016; Bono 
et al., 2021). In this report, we follow the recommended practices of 
reporting GLMM results [Bono et  al., 2021; also see Cooper and 
American Psychological Association (2018)].

We carried out GLMM in two stages. We first constructed an 
exploratory model, which we will refer to as the “Initial Model,” in 
which we included as predictor variables all the primary independent 
variables in the given experiment and their pairwise interactions. For 
Experiments 1 through 3, the primary independent variables were 
base rate, false alarm rate, and the binary decision of the system. Hit 
rate was not included as a variable, because the hit rate was not varied 
in these experiments. The hit rate was varied in Experiment 4, and was 
included in the modeling of the results for Experiment 4.

Our modeling approach was designed to safeguard against the 
common pitfalls of regression modeling of real-world data (Aggarwal 
and Ranganathan, 2017; Ranganathan and Aggarwal, 2018). We will 
note many of the features of our approach in this section, and will 
highlight additional ones in context in the Results section of various 
experiments as appropriate, and will discuss the limitations of our 
approach in the General Discussion section.

One of the potential pitfalls of GLMM in particular, and of multiple 
regression in general, arises when the predictor (or independent) 
variables are mutually correlated, i.e., the nominally independent 
variables are not actually independent (Aggarwal and Ranganathan, 
2017; Ranganathan and Aggarwal, 2018). Note that this caveat does not 
apply to our experiments, because the predictor variables were truly 
independent in that they were varied independently of each other. Note 
also that the fact that two or more predictor variables may have a joint 
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influence on the response variable is not the same as the predictor 
variables being mutually correlated (Jaccard and Turrisi, 2003). In our 
models, such joint influences are captured by the interaction between 
predictor variables (Jaccard and Turrisi, 2003).

Analysis of the relative importance of the 
independent variables: lmg statistic

The relative importance of predictor variables was assessed using 
the standard lmg statistic (Lindeman et al., 1980; Grömping, 2006). 
This is a well-established statistical analysis that can better assess the 
relative importance (or, equivalently, the relative contribution) of the 
predictor variables better than the conventional linear regression 
metrics, e.g., when the predictor variables covary (Lindeman et al., 
1980; Grömping, 2006).

Model selection

We used standard model selection procedures (Draper and Smith, 
1998; Burnham et al., 2002) to evaluate the aforementioned Initial 
Model to determine the most parsimonious version of this model that 
accounted for greatest possible amount of the information in the data. 
Model selection is the standard approach to minimizing overfitting 
effects, one of the common pitfalls of multiple regression (Hegdé, 2021).

We will refer to the model ultimately selected in this fashion as the 
“Final Model.” Specifically, we used the aforementioned Initial Model 
as the input to a stepwise model selection algorithm that used the 
Akaike Information Criterion or AIC (Venables and Ripley, 2003). 
While model selection was carried independently of the 
aforementioned lmg analysis (and vice versa), the results of the two 
analyses were largely consistent with each other (not shown).

Note that the above modeling procedures make no assumptions 
about how the subjects arrived at their probability estimations. Note, 
in particular, that our models do not, however indirectly, utilize 
Equations 1a and 1b above. Instead, our models are data driven, our 
methods simply determine the model that best fits the empirical data 
at hand. Note also that GLMM modeling neither assumes nor requires 
that the underlying relationship between the predictor variables on the 
one hand and the response variables on the other is linear (Dean and 
Nielsen, 2007; Berridge and Crouchley, 2011; Fox and Fox, 2016). On 
the other hand, the GLMM approach does make certain standard 
assumptions about the nature of the underlying data (Dean and 
Nielsen, 2007; Berridge and Crouchley, 2011; Fox and Fox, 2016). In 
general, data in all four experiments adequately met these assumptions 
(data not shown). In particular, the residuals were normally distributed 
in all four experiments (not shown), indicating that the linear models 
adequately captured the underlying relationship between the 
independent variables vs. response variables (Fox and Fox, 2016; Fox 
and Weisberg, 2019).

Relative contribution index

We calculated RCI values individually for each of the variables 
retained in the Final Model. We  defined RCI value for the given 
variable i as

 RCI = lmg lmgi actual i random, ,/  (2)

where lmg i, actual was the actual lmg value for the given variable.
To calculate the lmg i, random value, we  randomly reshuffled the 

values of each variable i across trials. We then refitted the same model 
to the randomized data and re-calculated the lmg value for each 
variable i. We repeated this process 1,000 times, calculated the lmg 
value for each variable i. The mean lmg value for a given variable i 
across the randomization was defined as the lmg i, random value for that 
variable. The uncorrected 95% confidence interval (CI) was defined 
as the 5th and the 95th percentiles the 1,000 lmg i, random values. The p 
value for the corresponding one-tailed alternative hypothesis was 
defined as the proportion of times the lmg i, random value was higher (or 
lower) than the lmg i, actual value (Manly, 2007). These p values were 
corrected for multiple comparison using the FDR method (Benjamini 
and Hochberg, 1995).

Note that the above RCI analysis implicitly uses the null 
hypothesis that all the predictor variables contribute equally to the 
observed probability estimates and tests this hypothesis against the 
empirical data. This is a principled approach, especially because the 
aforementioned previous studies of neglect implicitly assume that the 
proper estimation requires equal weighting (Kahneman and Tversky, 
1973; Fischhoff and Bar-Hillel, 1984; Thompson and Schumann, 1987; 
Koehler, 1996; Dahlman et al., 2016).

Experiment 1: Estimating the 
probability of cancer in a 
mammogram based on CAD system 
evidence

Methods

Thirteen subjects (10 women; mean age, 19.67 years ±1.67) 
participated in this experiment. Subjects were simultaneously given 
four items of information on a computer screen:

 1. The prevalence, or base rate, of breast cancer in the given 
cohort of patients [i.e., p(A) in Eqs. 1a,b above],

 2. The hit rate p(B|A) of a hypothetical CAD system for breast 
cancer detection,

 3. The false alarm rate p(B|-A) of the system, and
 4. The binary decision of the system as to whether or not a given 

mammogram was positive for cancer. No mammogram was 
shown. That is, the subjects had to estimate the probability that 
the given unseen mammogram was positive for cancer based 
solely on the above four items of information.

During this Experiment, we held the hit rate constant at 1.0, and 
systematically varied the remaining three variables, and measured its 
effect on the subjects’ estimated probabilities of cancer. During any 
given trial, values for each of the three variables were randomly drawn 
from the corresponding repertoire of possible values: two possible 
values of the base rate (0.05 or 0.005), five possible values of the false 
alarm rate (0.05, 0.25, 0.5, 0.75 and 0.95), and two possible values for 
the binary decision of the CAD system (0 or 1, corresponding to 
whether the mammogram was positive or negative for cancer, 
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respectively). Note that the values of the four variables varied 
independently from one trial to the next. Each possible combination 
of these values was tested exactly once during each block of 20 trials. 
Subjects performed 1 or 2 blocks each. Data were pooled across subjects.

It is worth noting that the data we present in this experiment are 
entirely independent of the data we have presented in a comparable 
previous study that was designed to address a different issue (Branch 
et  al., 2022). That is, the data in the two studies were collected 
independently of each other using non-overlapping sets of subjects. 
Moreover, task parameters used in the previous study were different 
from those used in this experiment.

Results

The cancer probability estimates pooled across all subjects are 
plotted as a function of the corresponding theoretically expected 
probabilities in Figure 1A, where each plotting symbol denotes the 
reported probability estimate from an individual subject during a 
single trial (see legend for details). The plotting symbols corresponding 
to the two decisions of the CAD system (i.e., that the given 
mammogram is positive or negative for cancer) are denoted as a red 

circle or green triangle, respectively (see key at bottom right of 
Figure 1). Each vertical column represents the data points for a single 
theoretically expected probability.

Two qualitative aspects of these results are worth noting. First, the 
subjects generally misestimated the probability of cancer, as denoted 
by the fact that the estimates (red circles and green triangles) differed 
substantially from the theoretically expected probabilities (‘X’ symbols 
and the diagonal). If the subjects had estimated the probability 
correctly, all their estimates would overlap the X symbol in the given 
column. Instead, the subjects’ estimates deviated substantially from 
the theoretically correct estimates. Across all subjects, the maximum 
and minimum difference between the reported vs. expected percent 
probabilities were 1.0 and − 0.21, respectively. The average difference 
was 0.33 ± 0.29 (standard deviation).

Second, the estimated values typically were overestimates, as 
denoted by the fact that most of the estimates were above the diagonal. 
The overestimates were highly significant (1-tailed paired t-test, 
t = 26.60, df = 519, p < 2.2−16). This systematic bias straightforwardly 
indicates that the subjects failed to estimate the probabilities 
accurately. Intriguingly, the subjects’ overestimates were significantly 
larger when the mammogram was deemed positive for cancer than 
when they were deemed negative (1-tailed t-test, t = 8.61, df = 516.15, 

A B

D E

C

FIGURE 1

Estimation errors in Experiment 1. (A) Probability of cancer estimated by the subjects (y-axis) as a function of the corresponding theoretically expected 
probabilities (x-axis). Each red circle or green triangle denotes a single trial in which the hypothetical CAD system decided that the mammogram in 
question was positive or negative for cancer, respectively (see legend at bottom right). The ‘X’ symbols and the dashed diagonal denote hypothetical 
scenarios where the subjects’ estimated probability exactly matched the corresponding expected probability. The color of the plotting symbols (red vs. 
green) denote individual trials in which the CAD system determined that the given mammogram was positive or negative for cancer, respectively. The 
lines denote the best-fitting linear regression line in each case. (B,C) The interaction between the base rate and the binary decision of the system. The 
same plotting conventions as in panel A are used, except that in this panel, the estimated probability (y-axis) is plotted against the base rate (x-axis). For 
visual clarity, the data corresponding to the two decisions of the CAD system (mammogram positive or negative for cancer) are shown separately in 
panel d and e, respectively. In either panel, the solid and dashed lines denote best-fitting regression line. Panels (D,E) similarly show the interaction 
between the false alarm rate and the binary decision of the system, the estimated probability (y-axis) is plotted as a function of whether the CAD 
system decided that the mammogram was positive or negative for cancer (panel D or E), respectively. See text for details.
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TABLE 1 Summary of regression modeling of the reported probabilities in Experiment 1.

Predictor variable in the initial model‡ Exploratory linear regression model lmg value (% 
contribution 

to overall 
R2)†*

Estimated 
coefficient β

Standard 
error

t value p value

# Name A B C D E

1 Null model (intercept only) 0.20 0.04 5.19 2.99 × 10−7 (N.A.)

2 Base rate of cancer in the cohort −3.39 0.99 −3.39 0.69 2%

3 False alarm rate of the CAD system 0.03 0.06 0.57 0.57 19%

4 Binary decision of the system 0.64 0.05 13.75 <2 × 10−16 48%

5 Interaction of base rate & false alarm rate 1.82 1.45 1.25 0.21 0.4%

6 Interaction of base rate & binary decision 1.39 0.94 1.48 0.14 0.5%

7 Interaction of false alarm rate & binary decision −0.75 0.07 −11.54 <2 × 10−16 31%

‡See Methods for additional details. †The model as a whole accounted for 45.59% of the variance (i.e., R2 = 0.4559). *Model selection procedures retained variables # 2, 3, 4, 6, and 7 in the Final 
Model (not shown).

p < 2.2−16). Together, these results suggest that the subjects were 
performing the task intuitively, rather than using systematic, 
logical reasoning.

To help quantify the extent to which the various explanatory (or 
predictor) variables contributed to the subjects’ estimates, 
we constructed a generalized linear mixed model (GLMM), in which 
we  included all three independent variables we  varied in this 
experiment, along with their pairwise interactions as predictors (see 
Methods for details). This exploratory model (or ‘Initial Model’) is 
summarized in Table 1. We report the results about both the beta (or 
regression) coefficients βi (columns A – D in Table  1) and the 
coefficients of determination R2 (column E) of this model, because 
they both provide useful, but mutually distinct, types of information 
about the underlying data, as briefly outlined below.

The Initial Model is given by the relationship

 0 1 1 2 2 7 7ŷ x x x= + + +…+ +β β β β ε   (3)

where ŷ is the model’s estimates of the values of the response 
variable (as opposed to the actual observed values y of the response 
variable); x1 through x7 are the seven predictor variables included in 
this model; β1 through β7 are the corresponding weight coefficients of 
the predictor variables; β0 is the model offset; and ε is the error, so that 
ε = y - ŷ. That is, the β values are scaling coefficients that collectively 
specify the offset (in case of β0) and the slope (in case of βi) of the 
regression line that best fits the data. They determine the values of the 
estimates ŷ directly as shown in Eq. 3, and are only indirectly related 
to actual observed values y. Thus, interpreting β values as representing 
the contribution of the predictor variables to the observed responses 
can be misleading to the extent to which ŷ differs from y, especially 
when the observed responses are scattered widely about the regression 
line (Draper and Smith, 1998; Burnham et al., 2002; Aggarwal and 
Ranganathan, 2017). On the other hand, to the extent to which ŷ is 
correlated with y, the best coefficients do provide useful information 
about the contribution of the predictor variables to the observed 
response. After all, beta coefficients are used for this purpose 
extensively in psychology, neuroscience, econometrics, etc. (Friston, 
2007; Gravetter and Wallnau, 2017; Laha, 2019; Hashimzade and 
Thornton, 2021). Regression coefficients are also essential for model 

selection, i.e., for determining which predictor variable/s make a 
statistically significant contribution to ŷ, and therefore should 
be retained in the parsimonious ‘Final Model’ of the data (Draper and 
Smith, 1998; Burnham et al., 2002).

On the other hand, for the purposes of measuring the contribution 
of the various predictor variables to the observed responses, metrics 
that reflect the statistical correlation between x and y are more 
appropriate (Draper and Smith, 1998; Burnham et al., 2002). For this 
purpose, we use the well-established lmg statistic (column E, Table 1), 
which denotes the percent contribution of the given predictor variable 
to the observed responses [see General Methods for details; also see 
Lindeman et al. (1980)].

An examination of the Initial Model indicated that the base rate 
of cancer in the patient cohort made a statistically insignificant 
contribution to the model (row 2). This straightforwardly suggests that 
the subjects underweighted, i.e., neglected, the base rate in making 
their decisions.

As noted above, many previous studies have suggested that base 
rate neglect occurs because subjects not only underweight the base 
rate but also simultaneously attach too much importance to the 
‘individuating information’, i.e., the binary decision of the system 
about the individual mammogram in the present case (Kahneman and 
Tversky, 1973). The contribution of the binary decision factor to the 
subject’s responses was indeed highly significant (row 4).

Note, however, the fact the binary decision contributed significantly 
does not necessarily mean that it overcontributed, i.e., that it 
contributed more than its share to the model. If, for the sake of 
argument, the subjects attached exactly correct weight to this factor 
(i.e., neither underweighted nor overweighted it), the contribution of 
this factor could still be  statistically significant. Thus, statistically 
significant contribution does not necessarily mean overcontribution/
overweighting. We  will revisit this issue below using additional  
analyses.

The false alarm rate by itself did not make a statistically significant 
contribution to the model at the level of 95% confidence in this model 
(row 3). However, the interaction between the false alarm rate and the 
binary decision of the system did (row 7). That is, the false alarm rate 
affected the subjects’ reports differentially depending on the binary 
decision of the system. This interaction is reflected in the fact that the 
best-fitting regression lines are different in Figures 1B,C. In other 
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words, the subjects’ estimates covaried with the false alarm rates when 
the CAD system decided that the individual mammogram was 
positive for cancer (Figure 1B), but not when the mammogram was 
deemed negative for cancer (Figure 1C), a finding confirmed by a 
2-way analysis of covariance (ANCOVA; false alarm rate x binary 
decision; p < 0.05 for both factors and their interaction, not shown). It 
is also worth noting that the estimated coefficient of this interaction 
factor was negative (Estimated Coefficient = −0.75; row 7, column A 
of Table 1), indicating that the overall effect of this factor was to reduce 
the estimated probabilities. By contrast, the binary decision had an 
effect of a comparable magnitude, but of opposite sign (Estimated 
Coefficient 0.64; row 4, column A). Thus, the overall estimates of the 
responses reflect a complex interplay of multiple, sometimes 
counteracting, factors.

The coefficient of determination of the Initial Model, R2, was 
0.4559, indicating that the seven predictor variables in this model 
collectively accounted for about 46% of the variance in the observed 
responses (see Footnote to Table 1). This raises the issue of how much 
each predictor variable contributed to this 45.59%. As noted above, 
previous studies have variously attributed such estimation errors to 
neglect or overweighting (i.e., where a given variable contributes less 
or more than its share) of the various underlying variables. Therefore, 
it is crucially important to determine the relative contribution of each 
of the variables in the present case.

To do this, we used the well-established method of the lmg index 
(Lindeman, Merenda and Gold index; Lindeman et al., 1980); lmg 
index (see Methods). The lmg index is a principled method for 
decomposing a given R2 value into the relative contributions from the 
various independent variables. It is equivalent to, but distinct from, 
partial R, and offers some advantages over the latter (Lindeman et al., 
1980). Under the null hypothesis (i.e., default assumption) that all six 
variables contributed equally to the overall fit, i.e., that the subjects 
weighted each variable appropriately, each variable is expected to 
contribute 1/6 ≈ 16.67% to the R2 value, i.e., explained variance or the 
model fit (see General Methods). The actual contributions are shown 
in column E of Table  1. The most important contributor to the 
subjects’ estimates was the individuating information, and it accounted 
for 48% of the R2 value (row 4, column E). Similarly, the false alarm-
binary decision interaction and the false alarm rate, respectively, 
accounted for about 31% and 19% of the R2 value. Thus, the subjects 
nominally overweighted each of these three variables (also see below). 
On the other hand, subjects underweighted, or neglected, the 
remaining three variables (rows 2, 5, and 6, column E).

The above results are based on the Initial Model that included all 
seven of the original predictor variables. It is well known that 
including too few or too many predictor variables can lead to 
modeling artifacts (Draper and Smith, 1998; Fox and Fox, 2016; 
Hegdé, 2021); therefore, it is desirable to optimally balance model 
complexity with model fit (Draper and Smith, 1998; Fox and Fox, 
2016), i.e., to determine the most parsimonious model that accounts 
for the most amount of observed data. We  used standard model 
selection procedures to determine such a parsimonious model for this 
experiment, which we will refer to as the ‘Final Model’ [see Methods 
for details; also see Draper and Smith (1998) and Fox and Fox (2016)]. 
The Final Model retained just five predictor variables: (i) base rate, (ii) 
false alarm rate, (iii) binary decision, (iv) base rate-binary decision 
interaction, and (v) the false alarm-binary decision interaction, 
indicating that only these five factors had a statistically significant 

effect on the subjects’ estimates (rows 2, 3, 4, 6, and 7 in Table 1; also 
see footnote to Table 1).

The aforementioned lmg value analysis did not address whether 
or not the relative contributions of the various variables were 
statistically significant. For instance, the fact that base rate is retained 
in the Final Model as a significant predictor of the outcome is 
noteworthy, but does it mean that the subjects do not significantly 
neglect base rate at all, i.e., do they give base rate its due weight in 
arriving at their estimates?

To help address such issues, we  calculated the Relative 
Contribution Index (RCI) for each of the five predictors in the Final 
Model (see General Methods for details). The RCI value for a given 
predictor is essentially its lmg value adjusted for the level of 
randomness in the empirical data. That is, the RCI value of the 
predictor measured the extent to which the actual lmg value for a 
given predictor compares to the lmg value for that predictor expected 
from random chance (see General Methods for details), where a value 
of 1.0 indicated that the predictor contributed exactly the expected 
amount to the outcome, and values >1 and < 1, respectively, indicate 
correspondingly higher or lower contribution than the contribution 
expected for that predictor. The RCI values for the five predictors in 
the Final Model are shown in Figure 2.

The RCI value for the base rate factor was 0.07 (predictor 2 in 
Figure 2), well below the RCI value expected from random (solid line 
in Figure 2), indicating that the subjects indeed underweighted the 
base rate substantially. However, this RCI value was still within the 

FIGURE 2

Relative contributions of various predictors to the fit of the Final 
Model in Experiment 1. The predictor variables are those that are 
retained in the Final Model and are numbered as in Table 1. The solid 
line denotes the expected contributions of the various predictors. 
The dashed lines denote the upper and lower 95% confidence 
intervals (uncorrected), empirically determined from the data. See 
text for details.
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95% confidence interval (CI: 0.006–3.39; see dashed lines in Figure 2), 
indicating that the underweighting was not statistically significant at 
95% confidence level.

On the other hand, the underweighting of the false alarm-binary 
decision interaction was indeed statistically significant (predictor 6; 
RCI = 0.027; CI: 0.042–3.1). The false alarm rate contributed slightly 
less than the expected amount (predictor 3; RCI = 0.94; CI: 0.007–
3.35). The binary decision of the system, as well as the false alarm-
binary decision interaction both made larger-than-average 
contributions to the outcome (RCI values of 2.4 and 1.5, respectively), 
although this was not statistically significant (CIs: 0.06–3.1 and 0.01–
3.34, respectively). When results were corrected for multiple 
comparisons (see Methods), the contribution of none of the variables 
remained statistically significant (not shown). Collectively, these 
results show that while subjects substantially underweighted (or 
neglected) some variables and overweighted some others, while only 
the binary decision-dependent neglect of the base rate was 
statistically significant.

Discussion

The above results show that naive subjects significantly 
overestimate the probability of cancer. They also identify multiple 
sources of these estimation errors, including the overweighting of 
some factors such as the binary decision of the CAD system, and 
underweighting other factors such as the base rate. In this regard, our 
results confirm and extend the previous studies to the present task.

These results are novel in three main respects. First, our results 
demonstrate that both underweighting and overweighting contribute 
to the estimation errors. Second, our results identify two additional 
contributing factors, namely the base rate-dependent neglect of false 
alarm rates, and the binary decision-dependent overweighting of the 
false-alarm rate. Previous studies have reported the neglect of false 
alarm rates (which the reports referred to as ‘miss rate neglect’) in the 
context of legal judgements (Dahlman et  al., 2016; Dahlman and 
Mackor, 2019). But to our knowledge, our study is the first to report 
the contribution of the above two factors and to report such 
conditional underweighting/overweighting. Finally, we demonstrate 
that the underweighting or overweighting of individual factors is not 
statistically significant although the collective effect of all the factors 
together is a significant overestimation of cancer probabilities, as 
noted above.

Our preliminary studies indicate that highly trained, practicing 
radiologists also commit similar errors in the same task (Branch et al., 
2022). Thus, overestimation of the probabilities was not attributable 
to the fact that the subjects in the present experiment were 
untrained professionals.

Experiment 2: Estimating the 
probability of drunkenness based on 
breathalyzer evidence

The results of Experiment 1 raise the issue of whether and to 
what extent they are idiosyncratic to the particular task that the 
subjects were carrying out. For instance, it may be that subjects 

tended to overestimate the probability of chance because of the 
perceived costs of underestimating the cancer risk. To the extent 
this is true, the pattern of estimation errors would change if the 
same problem was posed in a different problem context where 
costs of various types of errors (e.g., false positives and false 
negatives) were different. We tested this hypothesis in the present 
experiment by keeping all the parameters exactly the same, but 
using them to pose a different problem, namely estimating the 
probability of drunk driving based on the outcome of individual 
breathalyzer tests.

Methods

This experiment was identical to Experiment 1 except for the task. 
In this experiment, the subjects were told that the four items of 
information pertained to a breathalyzer system that was used for 
testing motorists for drunk driving. Specifically, the four 
parameters were:

 1. The base rate of drunk driving in the given cohort of motorists,
 2. The hit rate of a hypothetical breathalyzer system,
 3. The false alarm rate of the system, and
 4. The binary decision of the system (positive or negative for 

drunkenness) for a given motorist from the given cohort of 
motorists. No other data were provided to the subjects. Twelve 
subjects (eight women; mean age, 19.58 years ±1.44) 
participated in this experiment.

Results

The reported probabilities in this experiment (Figure 3A) were 
collectively indistinguishable from the results in Experiment 1 
(two-tailed t-test, p > 0.05; not shown), indicating that changing the 
task did not result in large-scale changes in the reported probabilities 
overall. The subjects’ reported estimates deviated substantially from 
the theoretically expected probabilities (Figure  3A). Across all 
subjects, the maximum and minimum difference between the 
reported vs. expected percent probabilities were 1.0 and − 0.32, 
respectively. The average difference was 0.33 ± 0.30. The subjects also 
significantly overestimated the probabilities (1-tailed paired t-test, 
t = 23.47, df = 459, p < 2.2−16). Also, magnitude of the overestimations 
was significantly larger when the mammogram was deemed positive 
for cancer than when it was deemed negative (one-tailed t-test, 
t = 8.69, df = 457.61, p < 2.2−16).

With the exception of the base rate-binary decision 
interaction, all of the predictors that contributed significantly to 
the outcome in Experiment 1 also did so in this experiment. The 
nature of the false alarm-binary decision interaction was similar 
to that in Experiment 1, so that the subjects took the false alarm 
rate into account when the breathalyzer system determined that 
the motorist was drunk, but not when the system decided 
otherwise (Figures  3B,C; ANCOVA; false alarm rate x binary 
decision; p < 0.05 for both factors and their interaction, not 
shown). This interaction and the binary decision variable made a 
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significant contribution to the outcome in the Initial Model 
(Table 2, rows 4 and 7, column D). These two variables and two 
additional variables, including the base rate and the false alarm 
rate, were retained in the Final Model (see footnote to Table 2).

Results of the RCI analysis showed that all four factors retained in 
the Final Model contributed substantially to the final outcome, and 
the under/overweighting of none of the contributions was statistically 
significant, even without correction for multiple comparisons 
(Figure 4).

Discussion

One notable difference between the results of this experiment 
from those in Experiment 1 was that the binary decision-base rate 
interaction was retained in the final mode in Experiment 1, but not in 
this experiment. Other than that, the results of this experiment were 
similar to those of Experiment 1. Most notably, our analyses showed 
no evidence for significant neglect or overweighting of any other 
variables in the present experiment, either. These results indicate that 

changing the task had little or no effect on the estimation 
of probabilities.

Experiment 3: Estimating the 
probability of an enemy sniper based 
on evidence from drone 
reconnaissance system

Methods

This experiment was identical to Experiments 1 and 2, except for 
the task. In this experiment, the subjects were told that the four items 
of information pertained to a military drone system that was used to 
reconnoiter a combat scene for enemy snipers. Specifically, the four 
parameters were:

 1. The prevalence of enemy snipers in the given theater of 
combat operations,

 2. The hit rate of the drone system,

A B C

FIGURE 3

Estimation errors in Experiment 2. The data are plotted according to the conventions used in Figure 1. (A) Probability of drunk driving estimated by the 
subjects plotted as a function of the corresponding theoretically expected probability. (B,C) Interaction between the false alarm rate and the binary 
decision of the breathalyzer. See text for details.

TABLE 2 Summary of regression modeling of the reported probabilities in Experiment 2.

Predictor variable in the initial 
model‡

Exploratory linear regression model lmg value (% 
contribution 

to overall 
R2)†*

Estimated 
coefficient β

Standard 
error

t value p value

# Name A B C D E

1 Null model (intercept only) 0.15 0.04 3.53 4.6 × 10−4 (N.A.)

2 Base rate of drunk driving in the cohort 1.57 1.08 1.45 0.15 0.6%

3 False alarm rate of the breathalyzer system 0.05 0.07 0.77 0.44 20%

4 Binary decision of the system 0.72 0.05 13.91 <2 × 10−16 53%

5 Interaction of base rate & false alarm rate −0.33 1.59 −0.21 0.83 0.01%

6 Interaction of base rate & binary decision −1.19 1.04 −1.15 0.25 0.3%

7 Interaction of false alarm rate & binary 

decision

−0.71 0.07 −9.91 <2 × 10−16 26%

‡See Methods for additional details. †The model as a whole accounted for 45.28% of the variance (i.e., R2 = 0.4528). *Model selection procedures retained variables # 2, 3, 4, and 7 in the Final 
Model (not shown).
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A B C

FIGURE 5

Estimation errors in Experiment 3. The data are plotted according to the conventions used in Figure 1. (A) Probability of enemy sniper estimated by the 
subjects is plotted here as a function of the corresponding theoretically expected probability. (B,C) Interaction between the false alarm rate and the 
binary decision of the reconnaissance drone. See text for details.

 3. The false alarm rate of the system, and
 4. The binary decision of the system (positive or negative for the 

presence of an enemy sniper) for a given combat scene from 
the given theater of operations. No other data were provided to 
the subjects. The subjects had to estimate the probability that 
an enemy sniper was present in the scene of combat. Thirteen 
subjects (nine women; mean age, 20.23 years ±2.39) 
participated in this experiment.

Results and discussion

The subjects’ responses in this experiment (Figure  5A) were 
indistinguishable from the results in Experiment 1 by a two-tailed 
t-test, p > 0.05; not shown.

The subjects’ reported estimates deviated substantially from the 
theoretically expected probabilities (Figure 5A). Across all subjects, 
the maximum and minimum difference between the reported vs. 
expected percent probabilities were 0.95 and − 0.46, respectively. The 
average difference was 0.33 ± 0.29. The subjects significantly 
overestimated the probabilities (1-tailed paired t-test, t = 23.55, 
df = 419, p < 2.2−16). This systematic bias straightforwardly indicates 
that the subjects failed to estimate the probabilities accurately. 
Intriguingly, the subjects’ overestimates were significantly larger when 
the combat scene was deemed positive for enemy sniper than when it 
was deemed negative (one-tailed t-test, t = 5.94, df = 412.77, p = 3.08−09; 
also see Figures 5B,C).

In this experiment, only three predictor variables were retained 
in the Final Model: false alarm rate of the drone system, binary 
decision of the system, and the false alarm-binary decision 
interaction (see footnote to Table 3). Recall that all three variables 
were also retained in Experiments 1 and 2, but two additional 
predictors were retained in those experiments that were not retained 
in this experiment, raising the possibility that the variables in 
question were over/underweighted in the present experiment. 
However, the over/underweighting of none of the variables was 
statistically significant in this experiment, even without correction 
for multiple comparisons (Figure 6).

Experiment 4: Estimating the 
probability of an enemy sniper based 
on evidence from drone 
reconnaissance system (version 2)

In Experiments 1–3, only the problem scenario differed across the 
experiments, but numerical values of the four probabilistic parameters 
remained the same. This design helped us address the important issue 
of the extent to which the estimation errors vary or remain the same 
depending on the problem scenario. The present experiment took the 

FIGURE 4

Relative contributions of various predictors to the fit of the Final 
Model in Experiment 2. The predictor variables are those that are 
retained in the Final Model and are numbered as in Table 2. The solid 
line denotes the expected contributions of the various predictors. 
The dashed lines denote the upper and lower 95% confidence 
intervals (uncorrected), empirically determined from the data. See 
text for details.
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complementary approach of varying the parameter values while 
keeping the problem scenario unchanged.

This tweak in the experimental design allowed us to test additional 
hypotheses about the underlying phenomenon. For instance, subjects 
in Experiments 1–3 showed a conditional neglect of the false alarm 
rate, wherein subjects underweighted the false alarm rate differently 
based on the binary decision of the system. The present experiment 

was designed to test the hypothesis that the subjects show a similar 
conditional neglect of the hit rate. A second hypothesis is that all other 
things being equal, subjects attach more weight to the hit rate than to 
the false alarm rate.

Methods

This experiment was identical to Experiment 3, except in two 
respects: To help better characterize the effect of varying the false 
alarm rates, we increased the number of possible hit rates to three 
(0.05, 0.5, and 0.95), so that the hit rate during any given trial was 
randomly drawn from these three values. Second, the false alarm rate 
during any given trial was drawn from the palette of the same three 
values (i.e., 0.0, 0.05, 0.5, and 0.95). As alluded to above, the problem 
scenario remained the same as in Experiment 3, so that the subjects 
estimated the probability that an enemy sniper was present in the 
scene of combat. Seven subjects (five women and one non-binary 
person; mean age, 27.71 years ±2.43) participated in this experiment.

Results and discussion

The reported probabilities in this experiment (Figure 7A) were 
collectively indistinguishable from the results in Experiment 1 
(two-tailed t-test, p > 0.05; not shown), indicating that changing the 
task did not result in large-scale changes in the reported probabilities 
overall. The subjects’ reported estimates deviated substantially from 
the theoretically expected probabilities (Figure  7A). Across all 
subjects, the maximum and minimum difference between the 
reported vs. expected percent probabilities were 0.96 and − 0.97, 
respectively. The average difference was 0.19 ± 0.40. The subjects 
significantly overestimated the probabilities (1-tailed paired t-test, 
t = 14.81, df = 1,007, p < 2.2−16). This systematic bias straightforwardly 
indicates that the subjects failed to estimate the probabilities 
accurately. However, in contrast to the results obtained in Experiments 
1–3, the subjects’ overestimates were statistically indistinguishable 
between the combat scene was deemed positive for enemy sniper than 
when it was deemed negative (one-tailed t-test, t = −0.59, df = 890.22, 
p = 0.72).

TABLE 3 Summary of regression modeling of the reported probabilities in Experiment 3.

Predictor variable in the initial model‡ Exploratory linear regression model lmg value (% 
contribution 
to overall 
R2)†*

Estimated 
coefficient 

β

Standard 
error

t value p value

# Name A B C D E

1 Null model (intercept only) 0.16 0.05 3.46 5.9 × 10−4 (N.A.)

2 Base rate (i.e., prevalence of snipers in the given theater of combat) 0.87 1.19 0.73 0.46 0.8%

3 False alarm rate of the reconnaissance drone system 0.14 0.07 1.88 0.06 13%

4 Binary decision of the system 0.58 0.06 10.31 <2 × 10−16 52%

5 Interaction of base rate & false alarm rate −0.46 1.75 −0.26 0.79 0.04%

6 Interaction of base rate & binary decision 0.14 1.14 0.13 0.90 0.008%

7 Interaction of false alarm rate & binary decision −0.65 0.08 −8.23 2.51 × 10−15 34%

‡See Methods for additional details. †The model as a whole accounted for 32.55% of the variance (i.e., R2 = 0.3255). *Model selection procedures (not shown) retained variables # 3, 4, and 7 in 
the Final Model (not shown).

FIGURE 6

Relative contributions of various predictors to the fit of the Final 
Model in Experiment 3. The predictor variables are those that are 
retained in the Final Model and are numbered as in Table 3. The solid 
line denotes the expected contributions of the various predictors. 
The dashed lines denote the upper and lower 95% confidence 
intervals (uncorrected), empirically determined from the data. See 
text for details.
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As noted above, unlike in Experiments 1–3, the hit rate was varied 
in this experiment. This manipulation revealed a new interaction, 
namely the conditional neglect of hit rates, wherein the subjects 
underweighted the hit rate of the drone system based on the binary 
decision of the system (Figures 7B,C; ANCOVA; hit rate x binary 
decision; p < 0.05 for both factors and their interaction, not shown). 
The subjects also showed a conditional neglect of the false alarm rate 
(Figures 7D,E; ANCOVA; false alarm rate x binary decision; p < 0.05 
for both factors and their interaction, not shown).

In this experiment, six different predictor variables were 
retained in the Final Model: base rate, hit rate, false alarm rate, 
binary decision of the system, and two interaction factors: the 
hit-rate binary decision interaction and the false alarm rate-binary 
decision (rows 2–7 in Table 4; also see footnote to Table 4). The 
two factors involving hit rate retained in this experiment were not 
available in Experiments 1–3.

RCI analysis (Figure 8) showed that, of the six factors retained in 
the Final Model in this experiment, the relative contribution of only 
two—binary decision and the hit rate-binary decision interaction 
(predictors 5 and 6, respectively)—were significantly outside the 
uncorrected 95% confidence intervals. However, only the hit rate-
binary decision interaction factor survived the correction for multiple 
comparisons, indicating that the relative contribution of this factor 
was significantly smaller than expected. That is, judging by the RCI 
analysis, this factor can be  reasonably deemed to be  significantly 
neglected. That is, the subjects’ failure to properly weight the 

individuating information as a function of the hit rate was 
statistically significant.

While one may be  tempted to claim that the hit rate-binary 
decision interaction factor in this experiment was the only factor in 
our entire study to be  significantly over/underweighted, doing so 
would be  unwise. This is because making this comparison would 
require correction for this extended multiple comparison, in which 
this factor does not survive.

General discussion

Generalizability of probability estimation 
errors

Several aspects of the estimation errors were common to all four 
experiments in our study. First of all, subjects failed to make accurate 
judgements in each experiment. Second, the judgement errors were 
large, and varied widely from the theoretically expected estimations. 
Finally, the estimation errors represented significant overestimations 
in all four experiments.

It is also noteworthy that the overall pattern of errors was 
statistically indistinguishable across the four experiments (one-way 
ANOVA; p = 0.98 for the between-experiment factor; data not shown), 
even though the tasks and/or underlying probabilistic parameters 
varied across the experiments. This indicates that the errors were a 

A B C

D E

FIGURE 7

Estimation errors in Experiment 4. The data are plotted according to the conventions used in Figure 1. (A) Probability of enemy sniper estimated by 
subjects is plotted in this Figure as a function of the corresponding theoretically expected probability. (B,C) Interaction between the hit rate and the 
binary decision of the reconnaissance drone. (D,E) Interaction between the false alarm rate and the binary decision of the drone. See text for details.
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general feature of the estimation problem used in our study, and 
generalized across the tasks and the experimental parameters we used. 
This straightforwardly suggests that the subjects are unlikely to have 

used grossly different mental strategies for estimating the probability 
of the outcome.

Factors that contribute significantly to 
estimation errors

Our analyses identified multiple contributing factors for the errors. 
Both the similarities and differences among these factors across 
experiments are noteworthy. On the one hand, factors such as 
overweighting of the binary decision (i.e., individuating information) 
and the underweighting (or neglect) of the base rate were major 
contributing factors to the errors across all four experiments. These 
findings are consistent with the large body of earlier studies using this 
task paradigm as well as other task paradigms that have attributed the 
errors variously to one or both of these factors (Kahneman and Tversky, 
1973; Fischhoff and Bar-Hillel, 1984; Thompson and Schumann, 1987; 
Koehler, 1996; Baratgin and Noveck, 2000; Fantino, 2004; Barbey and 
Sloman, 2007; Dahlman et al., 2016; Sanborn and Chater, 2016; also see 
Koehler (1996) and the accompanying commentaries).

On the other hand, some factors made statistically significant 
contributions to the outcome in some experiments and not others. For 
instance, the interaction between the base rate and binary decision 
was evident in Experiments 1 and 4, but not in the other two 
experiments. Further studies are needed to address the issue of why 
exactly the relative contributions of factors differed across tasks.

Our study also identified several additional contributing factors 
that, to our knowledge, have not been previously reported. The most 
notable among these are the factor interactions. We identified many 
statistically significant interactions across the experiments 
(Tables 1–4). Of particular note is the interaction between false 
alarm rates and binary decisions, whereby the subjects attach 
different weight to the false alarm rates depending on the binary 
decision (and vice versa). Intriguingly, this interaction was 

TABLE 4 Summary of regression modeling of the reported probabilities in Experiment 4.

Predictor variable in the initial model‡

Exploratory linear regression model lmg value (% 
Contribution 

to overall 
R2)†*

Estimated 
coefficient 

β
Standard 

error
t value p value

# Name A B C D E

1 Null model (intercept only) 0.37 0.04 9.74 <2 × 10−16 (N.A.)

2 Base rate (i.e., prevalence of snipers in the theater of combat) −0.01 0.92 −0.01 0.99 0.05%

3 Hit rate of the reconnaissance drone system −0.28 0.05 −5.11 3.90 × 10−07 4.34%

4 False alarm rate of the system 0.03 0.06 0.59 0.55 3.9%

5 Binary decision of the system −0.05 0.04 −1.10 0.27 32%

6 Interaction of hit rate & binary decision 0.79 0.05 15.39 <2 × 10−16 50%

7 Interaction of false alarm rate & binary decision −0.33 0.05 −6.64 5.14 × 10−11 9.37%

8 Interaction of hit rate & base rate −0.30 1.14 −0.26 0.80 0.02%

9 Interaction of false alarm rate & base rate 0.62 1.09 0.57 0.57 0.07%

10 Interaction of base rate & binary decision 0.24 0.84 0.29 0.77 0.02%

11 Interaction of false alarm rate & hit rate 0.02 0.07 0.23 0.82 0.01%

‡See Methods for additional details. †The model as a whole accounted for 32.06% of the variance (i.e., R2 = 0.3206). *Model selection procedures retained variables # 2, 3, 4, 5, 6, and 7 in the 
Final Model (not shown).

FIGURE 8

Relative contributions of various predictors to the fit of the Final Model 
in Experiment 4. The predictor variables are those that are retained in 
the Final Model and are numbered as in Table 4. The solid line denotes 
the expected contributions of the various predictors. The dashed lines 
denote the upper and lower 95% confidence intervals (uncorrected), 
empirically determined from the data. See text for details.
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statistically significant in all four of the experiments. To our 
knowledge, such interaction (or, ‘conditional’) effects have not been 
reported before, although previous studies have reported a neglect 
of the false alarm rates (sometimes referred to as the “miss rate 
neglect”) in the context of legal decision-making (Thompson and 
Schumann, 1987; Dahlman et al., 2016).

Causes of the errors are significant as a 
group, not individually

Our results show that the aforementioned factors, as a group, do 
account for a significant amount of the subjects’ estimates of the 
probabilities. Depending on the experiment, the independent 
variables collectively account for about 30 to 45% of the variance, 
depending on the experiment. Of course, this is unsurprising, because 
in any study, the independent variables would be expected to account 
for the response variable/s, to the extent that the former have any 
bearing on the latter.

What is surprising about our results is the fact that, by a principled 
set of criteria, none of the contributing factors by itself significantly 
accounts for the outcome (see below for caveats). As noted earlier, 
many previous studies have attributed these errors variously to the 
neglect of base rates, overweighting of the evidence for the individual 
event, or both [for an overview, see Koehler (1996) and the 
accompanying commentaries]. The collective effect of these studies 
has been substantial, in that the estimation errors in question have 
come to be widely known as the base rate neglect, base rate fallacy, or 
base rate bias (Kahneman et al., 1982; Gigerenzer and Hoffrage, 1995; 
Fantino, 2004). Some previous studies have attributed these errors in 
other contexts, such as legal decision-making, to the so-called fallacy 
of the transposed conditional or the prosecutor’s fallacy, where the 
subjects conflate p(A|B) for p(B|A) (Thompson and Schumann, 1987), 
or to the neglect of false alarm rates, sometimes referred to as the miss 
rate neglect (Dahlman et al., 2016).

While these studies provide empirical evidence that subjects do 
underweight (or conflate, in case of the prosecutor’s fallacy) the 
relevant variables, they do not show that these factors by themselves 
fully account for the errors. In fairness to such studies, few of them 
expressly claim that factors such as base rate neglect fully account for 
the errors. However, factors such as base rate neglect have somehow 
come to be  thought of as sufficient explanations for the 
underlying errors.

Our study successfully reproduces the estimation errors, and 
demonstrates that such claims are misleading at best, because they 
obscure the complexities of the underlying phenomena. On the one 
hand, our results unambiguously show that subjects make large, 
systematic errors, which straightforwardly means that the subjects fail 
to correctly weight the various underlying factors to one degree or 
another. This in turn raises the question of what level of 
underweighting constitutes neglect. For instance, if the subject 
underweights the base rate factor by, say, an average of 10%, can this 
legitimately be  deemed base rate neglect? Previous studies have 
generally avoided this issue. This study takes the position that 
underweighting can be deemed neglect if it is statistically significant, 
i.e., if the weight is significantly lower than that expected from random 
chance. Similarly, a given factor can be considered overweighted if it 
is significantly larger than that expected from random chance. These 

clearly are principled criteria, but by no means the only possible ones 
(see below).

Some important caveats

In addition to the various methodological caveats noted in context 
throughout this report, a few caveats are especially worth highlighting 
here: First, as alluded to above, our study focused narrowly on the 
question of whether and to what extent the observed biases can 
be accounted for by the overweighting or neglect of individual factors, 
as implied by the earlier studies. For this reason, our study remained 
advisedly agnostic about a variety of important, vigorously debated 
questions in the field. Chief among these are issues such as (i) how the 
subjects arrive at their estimates (Kahneman et al., 1982; Koehler, 
1996), (ii) approaches to reducing the estimation errors and efficacy 
of these errors (Hoffrage and Gigerenzer, 1998; Uhlmann et al., 2007; 
Raab and Gigerenzer, 2015), (iii) the methodological and conceptual 
validity and usefulness of formulating and studying the probability 
estimations within the Bayesian framework (Koehler, 1996; Baratgin 
and Noveck, 2000; Fantino, 2004; Barbey and Sloman, 2007; Sanborn 
and Chater, 2016), and (iv) whether and to what extent our findings 
generalize to other task paradigms of probability estimation (e.g., 
Gigerenzer, 1996; Koehler, 1996), or when tested using a larger 
number of disparate problem scenarios. Further studies are needed to 
address each of these questions.

In addition to the various methodological caveats noted in context 
throughout this report, two caveats are especially worth highlighting 
here: First, as its name indicates, GLMM assumes a linear relationship 
between the predictor variables and the response variable. While our 
GLMMs did indeed satisfy the underlying assumptions (data not 
shown), this does not by itself prove that the actual underlying 
relationship is linear. Indeed, it remains possible that there exists an 
unknown non-linear relationship that accounts for the observed data 
even better.

Concluding remarks

A main significance of our study is that it calls into question the 
validity of attributing the probability estimation errors to individual 
factors. But in a larger sense, the significance of our study is that it 
proposes a set of reasonable criteria and methods for evaluating the 
potential causes of probability estimation errors.

Data availability statement

The original contributions presented in the study are included in 
the article/Supplementary material, further inquiries can be directed 
to the corresponding author.

Ethics statement

The studies involving human participants were reviewed and 
approved by Institutional Review Board (IRB) of Augusta  
University, Augusta, GA, United  States. The patients/participants 

https://doi.org/10.3389/fpsyg.2023.1132168
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Branch and Hegdé 10.3389/fpsyg.2023.1132168

Frontiers in Psychology 15 frontiersin.org

provided their written informed consent to participate in this  
study.

Author contributions

FB and JH jointly designed the study, collected and analyzed the 
data, and wrote the manuscript. All authors contributed to the article 
and approved the submitted version.

Funding

This study was supported by grant # W911NF-15-1-0311 from the 
Army Research Office (ARO) to JH.

Acknowledgments

Erin Park, Khadeja Cohen, and Matthew Williams provided 
technical assistance during some sessions of data collection. Havilah 
Ravula provided helpful assistance during manuscript preparation.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fpsyg.2023.1132168/
full#supplementary-material

References
Aggarwal, R., and Ranganathan, P. (2017). Common pitfalls in statistical analysis: 

linear regression analysis. Perspect. Clin. Res. 8, 100–102. doi: 10.4103/2229-3485. 
203040

Baratgin, J., and Noveck, I. A. (2000). Not only base rates are neglected in the 
engineer-lawyer problem: an investigation of reasoners’ underutilization of 
complementarity. Mem. Cogn. 28, 79–91. doi: 10.3758/BF03211578

Barbey, A. K., and Sloman, S. A. (2007). Base-rate respect: from ecological rationality 
to dual processes. Behav. Brain Sci. 30, 241–254. doi: 10.1017/S0140525X07001653

Bar-Hillel, M. (1980). The base-rate fallacy in probability judgments. Acta Psychologia. 
44, 211–233. doi: 10.1016/0001-6918(80)90046-3

Bar-Hillel, M. (1991). Commentary on Wolford, Taylor, and Beck: the conjunction 
fallacy? Mem. Cogn. 19, 412–414. doi: 10.3758/BF03197146

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a 
practical and powerful approach to multiple testing. J. Royal Statistical Society B. 57, 
289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x

Berridge, D., and Crouchley, R. (2011). Multivariate generalized linear mixed models 
using R. Boca Raton, FL: CRC Press. xxiii, 280.

Bono, R., Alarcon, R., and Blanca, M. J. (2021). Report quality of generalized linear 
mixed models in psychology: a systematic review. Front. Psychol. 12:666182. doi: 
10.3389/fpsyg.2021.666182

Branch, F., Williams, K. M., Santana, I. N., and Hegdé, J. (2022). How well do 
practicing radiologists interpret the results of CAD technology? A quantitative 
characterization. Cognitive Research: Principles and Implications 7:52. doi: 10.1186/
s41235-022-00375-9

Burnham, K. P., Anderson, D. R., and Burnham, K. P. (2002). Model selection and 
multimodel inference: A practical information-theoretic approach. 2nd New York: 
Springer. xxvi, 488.

Cooper, H. M.American Psychological Association. (2018). Reporting quantitative 
research in psychology: How to meet APA style journal article reporting standards. Second 
Washington, DC: American Psychological Association. vii, 217.

Dahlman, C., and Mackor, A. R. (2019). Coherence and probability in legal evidence. 
Law, Probability and Risk. 18, 275–294. doi: 10.1093/lpr/mgz016

Dahlman, C., Zenker, F., and Sarwar, F. (2016). Miss rate neglect in legal evidence. 
Law, Probability and Risk. 15, 239–250. doi: 10.1093/lpr/mgw007

Dean, C. B., and Nielsen, J. D. (2007). Generalized linear mixed models: a review and 
some extensions. Lifetime Data Anal. 13, 497–512. doi: 10.1007/s10985-007-9065-x

Draper, N. R., and Smith, H. (1998). Applied regression analysis. 3rd New York: Wiley. 
xvii, 706.

Eddy, D. M. (1982). “Probabilistic reasoning in clinical medicine: problems and 
opportunities” in Judgment under uncertainty: Heuristics and biases. eds. D. Kahneman 
and A. PaulTversky (New York, NY: Cambridge University Press), 249–267.

Eddy, D. M. (2005). Evidence-based medicine: a unified approach. Health Aff 
(Millwood). 24, 9–17. doi: 10.1377/hlthaff.24.1.9

Fantino, E. (2004). Behavior-analytic approaches to decision making. Behav. Process. 
66, 279–288. doi: 10.1016/j.beproc.2004.03.009

Fischhoff, B., and Bar-Hillel, M. (1984). Diagnosticity and the base-rate effect. Mem. 
Cogn. 12, 402–410. doi: 10.3758/BF03198301

Fox, J., and Fox, J. (2016). Applied regression analysis and generalized linear models. 
Third Edition Los Angeles: SAGE. xxiv, 791.

Fox, J., and Weisberg, S. An R companion to applied regression. Third Los Angeles: 
SAGE. (2019). xxx, 577p.

Friston, K. J. (2007). Statistical parametric mapping: The analysis of funtional brain 
images. 1st. Amsterdam; Boston: Elsevier/Academic Press. vii, 647.

Gigerenzer, G. (1996). The psychology of good judgment: frequency formats and 
simple algorithms. Med. Decis. Mak. 16, 273–280. doi: 10.1177/0272989X9601600312

Gigerenzer, G., and Hoffrage, U. (1995). How to improve Bayesian reasoning without 
instruction: frequency formats. Psychol. Rev. 102, 684–704. doi: 10.1037/0033-295X.102.4.684

Gravetter, F. J., and Wallnau, L. B. (2017). Statistics for the behavioral sciences. 10th 
Australia; United States: Cengage Learning. xix, 732p.

Grömping, U. (2006). Relative importance for linear regression in R: the package 
relaimpo. J. Stat. Softw. 17, 1–27. doi: 10.18637/jss.v017.i01

Hashimzade, N., and Thornton, M. A. (2021). Handbook of research methods and 
applications in empirical microeconomics. Cheltenham, UK; Northampton, MA: Edward 
Elgar publishing. xii, 650.

Hegdé, J. (2021). “Overfitting” in Encyclopedia of research design. ed. N. J. Salkind 
(Thousand Oaks, CA: SAGE Publications), 981–983.

Hoffrage, U., and Gigerenzer, G. (1998). Using natural frequencies to improve 
diagnostic inferences. Acad. Med. 73, 538–540. doi: 10.1097/00001888-199805000- 
00024

Hoffrage, U., Krauss, S., Martignon, L., and Gigerenzer, G. (2015). Natural frequencies 
improve Bayesian reasoning in simple and complex inference tasks. Front. Psychol. 
6:1473. doi: 10.3389/fpsyg.2015.01473

Jaccard, J., and Turrisi, R. (2003). Interaction effects in multiple regression. 2nd 
Thousand Oaks, Calif.: Sage Publications. vii, 92.

Kahneman, D., Slovic, P., and Tversky, A. Judgment under uncertainty: Heuristics and 
biases. Cambridge; New York: Cambridge University Press. (1982). xiii, 555.

Kahneman, D., and Tversky, A. (1973). On the psychology of prediction. Psychol. Rev. 
80, 237–251. doi: 10.1037/h0034747

Kahneman, D., and Tversky, A. (1982). “Evidential impact of base rates” in Judgment 
under uncertainty: Heuristics and biases. eds. D. Kahneman and A. PaulTversky (New 
York, NY: Cambridge University Press), 153–160.

https://doi.org/10.3389/fpsyg.2023.1132168
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fpsyg.2023.1132168/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpsyg.2023.1132168/full#supplementary-material
https://doi.org/10.4103/2229-3485.203040
https://doi.org/10.4103/2229-3485.203040
https://doi.org/10.3758/BF03211578
https://doi.org/10.1017/S0140525X07001653
https://doi.org/10.1016/0001-6918(80)90046-3
https://doi.org/10.3758/BF03197146
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.3389/fpsyg.2021.666182
https://doi.org/10.1186/s41235-022-00375-9
https://doi.org/10.1186/s41235-022-00375-9
https://doi.org/10.1093/lpr/mgz016
https://doi.org/10.1093/lpr/mgw007
https://doi.org/10.1007/s10985-007-9065-x
https://doi.org/10.1377/hlthaff.24.1.9
https://doi.org/10.1016/j.beproc.2004.03.009
https://doi.org/10.3758/BF03198301
https://doi.org/10.1177/0272989X9601600312
https://doi.org/10.1037/0033-295X.102.4.684
https://doi.org/10.18637/jss.v017.i01
https://doi.org/10.1097/00001888-199805000-00024
https://doi.org/10.1097/00001888-199805000-00024
https://doi.org/10.3389/fpsyg.2015.01473
https://doi.org/10.1037/h0034747


Branch and Hegdé 10.3389/fpsyg.2023.1132168

Frontiers in Psychology 16 frontiersin.org

Kalinowski, P., Fidler, F., and Cumming, G. (2008). Overcoming the inverse probability 
fallacy: a comparison of two teaching interventions. Methodology 4, 152–158. doi: 
10.1027/1614-2241.4.4.152

Koehler, J. J. (1996). The base rate fallacy reconsidered: descriptive, normative, and 
methodological challenges. Behav. Brain Sci. 19, 1–17. doi: 10.1017/S0140525X00041157

Laha, A. K. (2019). Advances in Analytics and Applications. Singapore: Springer.

Lindeman, R. H., Merenda, P. F., and Gold, R. Z. (1980). Introduction to bivariate and 
multivariate analysis. Glenview, Ill.: Scott, Foresman.

Mandel, D. R. (2014). The psychology of Bayesian reasoning. Front Psychol. 5:1144. 
doi: 10.3389/fpsyg.2014.01144

Manly, B. F. J. (2007). Randomization, bootstrap, and Monte Carlo methods in biology. 
3rd Boca Raton, FL: Chapman & Hall/ CRC. 455.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems. San Francisco, CA: 
Elsevier. 

R_Core_Team. (2019). R: A language and environment for statistical computing. 
Vienna, Austria: R Foundation for Statistical Computing. 

Raab, M., and Gigerenzer, G. (2015). The power of simplicity: a fast-and-frugal heuristics 
approach to performance science. Front. Psychol. 6:1672. doi: 10.3389/fpsyg.2015.01672

Raacke, J. D. (2005). Improving use of statistical information by jurors by reducing 
confusion of the inverse. Doctoral Thesis. Manhattan, Kansas: Kansas State University.

Ranganathan, P., and Aggarwal, R. (2018). Common pitfalls in statistical analysis: 
understanding the properties of diagnostic tests - part 1. Perspect. Clin. Res. 9, 40–43. 
doi: 10.4103/picr.PICR_170_17

Sanborn, A. N., and Chater, N. (2016). Bayesian brains without probabilities. Trends 
Cogn. Sci. 20, 883–893. doi: 10.1016/j.tics.2016.10.003

Sevilla, J., and Hegdé, J. (2017). “Deep” visual patterns are informative to practicing 
radiologists in mammograms in diagnostic tasks. J. Vis. 17:90. doi: 10.1167/ 
17.10.90

Spellman, B. A. (1996). The implicit use of base rates in experiential and ecologically 
valid tasks. Behavioral and Brain Sciences 19:38. doi: 10.1017/S0140525X 
00041406

Thompson, W. C., and Schumann, E. L. (1987). Interpretation of statistical evidence 
in criminal trials - the Prosecutor's fallacy and the defense Attorney's fallacy. Law Hum. 
Behav. 11, 167–187. doi: 10.1007/BF01044641

Uhlmann, E. L., Victoria, L., and Pizarro, D. (2007). The motivated use and neglect of 
base rates. Behav. Brain Sci. 30, 284–285. doi: 10.1017/S0140525X07001938

Venables, W. N. R., and Ripley, B. D. Modern applied statistics with S. New York, NY: 
Springer. (2003).

Villejoubert, G., and David, R. (2002). The inverse fallacy: an account of deviations 
from Bayes’s theorem and the additivity principle. Mem. Cogn. 30, 171–178. doi: 
10.3758/BF03195278

https://doi.org/10.3389/fpsyg.2023.1132168
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://doi.org/10.1027/1614-2241.4.4.152
https://doi.org/10.1017/S0140525X00041157
https://doi.org/10.3389/fpsyg.2014.01144
https://doi.org/10.3389/fpsyg.2015.01672
https://doi.org/10.4103/picr.PICR_170_17
https://doi.org/10.1016/j.tics.2016.10.003
https://doi.org/10.1167/17.10.90
https://doi.org/10.1167/17.10.90
https://doi.org/10.1017/S0140525X00041406
https://doi.org/10.1017/S0140525X00041406
https://doi.org/10.1007/BF01044641
https://doi.org/10.1017/S0140525X07001938
https://doi.org/10.3758/BF03195278

	Toward a more nuanced understanding of probability estimation biases
	Introduction
	General methods
	Participants
	Procedure
	Task paradigm
	Data analysis
	Power analyses
	Generalized linear mixed modeling
	Analysis of the relative importance of the independent variables: lmg statistic
	Model selection
	Relative contribution index

	Experiment 1: Estimating the probability of cancer in a mammogram based on CAD system evidence
	Methods
	Results
	Discussion

	Experiment 2: Estimating the probability of drunkenness based on breathalyzer evidence
	Methods
	Results
	Discussion

	Experiment 3: Estimating the probability of an enemy sniper based on evidence from drone reconnaissance system
	Methods
	Results and discussion

	Experiment 4: Estimating the probability of an enemy sniper based on evidence from drone reconnaissance system (version 2)
	Methods
	Results and discussion

	General discussion
	Generalizability of probability estimation errors
	Factors that contribute significantly to estimation errors
	Causes of the errors are significant as a group, not individually
	Some important caveats

	Concluding remarks
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note

	 References

