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How well do practicing radiologists interpret 
the results of CAD technology? A quantitative 
characterization
Fallon Branch1†  , K. Matthew Williams2†, Isabella Noel Santana1 and Jay Hegdé1,3,4,5*   

Abstract 

Many studies have shown that using a computer-aided detection (CAD) system does not significantly improve 
diagnostic accuracy in radiology, possibly because radiologists fail to interpret the CAD results properly. We tested this 
possibility using screening mammography as an illustrative example. We carried out two experiments, one using 28 
practicing radiologists, and a second one using 25 non-professional subjects. During each trial, subjects were shown 
the following four pieces of information necessary for evaluating the actual probability of cancer in a given unseen 
mammogram: the binary decision of the CAD system as to whether the mammogram was positive for cancer, the 
true-positive and false-positive rates of the system, and the prevalence of breast cancer in the relevant patient popu-
lation. Based only on this information, the subjects had to estimate the probability that the unseen mammogram in 
question was positive for cancer. Additionally, the non-professional subjects also had to decide, based on the same 
information, whether to recall the patients for additional testing. Both groups of subjects similarly (and significantly) 
overestimated the cancer probability regardless of the categorical CAD decision, suggesting that this effect is not 
peculiar to either group. The misestimations were not fully attributable to causes well-known in other contexts, such 
as base rate neglect or inverse fallacy. Non-professional subjects tended to recall the patients at high rates, even when 
the actual probably of cancer was at or near zero. Moreover, the recall rates closely reflected the subjects’ estimations 
of cancer probability. Together, our results show that subjects interpret CAD system output poorly when only the 
probabilistic information about the underlying decision parameters is available to them. Our results also highlight the 
need for making the output of CAD systems more readily interpretable, and for providing training and assistance to 
radiologists in evaluating the output.
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Significance
Computer-aided detection (CAD) technology was first 
approved for clinical use—specifically for breast cancer 
detection—by the US Food and Drug Administration 
(FDA) in 1998. Since then, the use of CAD technology 

has increased dramatically, especially in clinical fields in 
which medical images play a central role, such as radiol-
ogy, pathology, neurology, and surgery (Doi, 2007; El-Baz 
& Suri, 2018, 2020; Fraioli et al., 2010; Mansourian et al., 
2021; Regge & Halligan, 2013; Schlegl et al., 2018).

The leading sub-specialty for CAD use in radiology 
is screening mammography, or periodic screening of 
asymptomatic women for breast cancer (Helvie & Bevers, 
2018; Hooshmand et  al., 2021). CAD is currently used 
for a majority of screening mammograms in the US, and 
costs hundreds of millions of dollars each year (Lehman 
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et al., 2015). By 2016, over 92% of facilities in the US that 
offered digital mammography used a CAD system for 
breast cancer detection (Keen et  al., 2018). This overall 
trend holds worldwide, including in many developing 
countries (Ikeda & Miyake, 2017).

However, several studies have shown that the use of 
CAD does not improve diagnostic accuracy (de Hoop 
et al., 2010; Lehman et al., 2015; Regge & Halligan, 2013). 
Some studies have raised the possibility that one reason 
why CAD systems do not enhance detection of cancer of 
the colon (Regge & Halligan, 2013) and of the lung (de 
Hoop et al., 2010) is that radiologists fail to interpret the 
results of CAD systems properly. Thus, a major challenge 
in improving the efficacy of CAD technology in radiol-
ogy is to ensure that radiologists properly interpret the 
results of CAD systems (Keen et al., 2018; Yanase & Tri-
antaphyllou, 2019).

To help lay the groundwork for this endeavor, the pre-
sent study focused on first understanding how radiolo-
gists interpret CAD information.

Experiment 1: Interpretation of CAD system 
decisions by practicing radiologists
The process of interpreting CAD results is a complex 
one. This is in part because CAD systems typically pro-
vide multiple types of output information, including the 
region/s of interest (ROI/s) in a given medical image. It 
is also because radiologists typically evaluate the CAD 
output together with the relevant medical images of, 
and other clinical information about, the patient (Keen 
et al., 2018; Lehman et al., 2015; Regge & Halligan, 2013; 
Yanase & Triantaphyllou, 2019). Moreover, the exact 
nature of the output information and the guidelines for 
CAD use can vary depending on the particular CAD sys-
tem, the clinical practice, and regulatory environments 
(Yanase & Triantaphyllou, 2019).

Trying to address this forbiddingly complex problem all 
at once would require a prohibitively large study. There-
fore, for practical reasons, we adopted a layered, ‘divide 
and conquer’ approach, whereby we would first focus on 
understanding the various basic components of the pro-
cess—especially the underlying cognitive mechanisms—
individually, and then seek to understand the process as a 
whole. The two experiments described in this report rep-
resent the first part of this multilayered approach.

Given the aforementioned significance of screening 
mammography, we used it as the exemplar case. For the 
practical reasons noted above, our study did not address 
CAD use in mammography as a whole. Rather, it exam-
ined how radiologists interpreted the binary decision of 
the CAD system as to whether a mammogram was posi-
tive for cancer without seeing the mammogram itself.

Experiment 1 sought to address the following simple 
issue: If a CAD system examines a mammogram from a 
particular cohort of patients and reports only whether 
the mammogram was positive or negative for cancer, 
how do the radiologists arrive at their own estimates of 
the chances that the given unseen mammogram is actu-
ally positive for cancer? How well do they account for the 
various underlying probabilistic factors? This aspect of 
CAD use is admittedly removed from the actual clinical 
decision-making. The rationale for focusing first on this 
seemingly abstract cognitive process is that the actual 
clinical decisions must take these perceived probabilities 
into account, however implicitly.

Methods
Subjects
All procedures used in this study were approved in 
advance by the Institutional Review Board of Augusta 
University, Augusta, GA, USA. The study was carried 
out under the aegis of the Perception Laboratory testing 
facility supported by the US National Cancer Institute at 
the 2018 and 2019 annual meetings of the Radiological 
Society of North America (RSNA) in Chicago, IL, USA.

Twenty-eight practicing radiologists (six of whom were 
women and 22 of whom were from the US) participated 
in Experiment 1. Three of the subjects were practicing 
mammography specialists with an average of 29.3  years 
(median, 30  years) of experience. The remaining 25 
subjects were attending radiologists who specialized in 
another subspecialty of radiology, and/or were trainees 
(residents or fellows) who had completed an average of 
10.9  years (median, 5  years) of radiological experience. 
Since these demographic variables did not significantly 
affect the responses of the subjects (data not shown), we 
pooled the data across all 28 subjects.

The radiologists volunteered for this study and pro-
vided informed consent with the proviso that each could 
only spare a few minutes of participation. This practical, 
unavoidable constraint limited the total number of trials 
each radiologist could perform to 20.

Task paradigm
Radiologists were simultaneously given four items of 
information on a computer screen:

 i. the base rate of breast cancer in the given cohort of 
patients [i.e., p(C) in Eqs. 1a,b below],

 ii. the hit rate p(D|C) of a hypothetical CAD system 
for breast cancer detection,

 iii. the false alarm rate p(D|-C) of the system, and
 iv. the categorical (i.e., binary) decision of the system 

as to whether the given mammogram was positive 
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or negative for cancer [D = 1 or D = 0]. No mam-
mogram was shown (see below for caveats).

The various rates and probabilities were presented both 
as fractions of 1 (e.g., 0.005) and as the corresponding 
‘natural frequencies’ (e.g., 5 in 1000), because previous 
studies have shown that some subjects, including clini-
cians, are more comfortable with natural frequencies 
(Hoffrage & Gigerenzer, 1998).

Using only the above four pieces of information, the 
subjects had to estimate, using a mouse-driven on-screen 
slider, the percent chance that the hypothetical mammo-
gram in question was positive for breast cancer.

The subjects were not shown the mammogram itself, 
nor provided with any other information relevant to the 
task. Specifically, they were provided no further informa-
tion about the hypothetical CAD system or the hypothet-
ical mammogram examined by the system. Moreover, the 
subjects were given no information as to what the correct 
probability value was or how to estimate it.

Subjects were afforded unlimited opportunity to view 
the on-screen information and enter their response. The 
theoretically expected probability of cancer p(C|D), i.e., 
the given mammogram was actually positive for cancer 
(C) given a positive finding of cancer (D) by the CAD sys-
tem, is given by the Bayesian formula

The corresponding expected probability when the CAD 
system determined that the mammogram was negative 
for cancer is given by

It is important to emphasize that the above equations 
were used solely for the purposes of calculating the theo-
retically expected probabilities during the post hoc data 
analyses. Subjects were made aware neither of these 
equations nor of the underlying math in general, nor 
advised of the mathematical fact that there is a unique 
correct answer to the problem at hand, and it is provided 
by these equations.

We systematically varied the values of the aforemen-
tioned four variables and studied its effect on the prob-
abilities reported (or, synonymously, estimated) by the 
radiologist. Depending on the trial, the base rate p(C) had 
two possible values (0.005 and 0.05); the false alarm rate 
p(D|-C) had five possible values (0.05, 0.25, 0.5, 0.75, 0.95); 
the hit rate p(D|C) had two possible values (1.0 and 0.95); 
and the binary decision D of the CAD system as to the 
cancer status of the mammogram had two possible values 

(1a)
p(C|D) = [p(C)p(D|C)]/[p(C)p(D|C) + p(−C)p(D|−C)].

(1b)

p(−C|−D) =[p(−C)p(−D|−C)]/[p(C)p(D|C)

+ p(−C)p(D|−C)].

(positive or negative for cancer). This resulted in 40 unique 
combinations of values (i.e., trial conditions), consisting of 
20 conditions in which the system decided that the mam-
mograms were positive for cancer, and 20 other conditions 
in which the system decided they were negative for cancer.

Given the aforementioned constraint of having to limit 
ourselves to 20 trials per radiologist, we tested each radi-
ologist with only one of the aforementioned two possible 
values of the hit rate. Since the results did not signifi-
cantly vary depending on the hit rate (not shown), we 
pooled the results across all subjects.

Rationale for the study design
We used the above experimental paradigm for three main 
reasons: First, it is an established paradigm for study-
ing problems of this type. Moreover, there is a clear-cut 
mathematical formulation of the underlying decision 
problem, making it at least as principled a choice for a 
task paradigm as any other (see, e.g., (Marewski & Gig-
erenzer, 2012)). Second, this paradigm has been used to 
study similar problems in a diverse array of other realms, 
including medicine, business, and law, just to name a 
few (Dahlman et al., 2016; Eddy, 2005; Kahneman et al., 
1982; Koehler, 1996; Mandel, 2014). This makes it easier 
to compare our empirical results with those from previ-
ous studies. Finally, systematically varying the underlying 
probabilistic parameters across trials as described above 
allowed us to quantitatively estimate the effect of various 
potential contributing factors to the errors, unlike many 
previous studies (for overviews, see Koehler, 1996; Man-
del, 2014)).

Rationale for the task. The choice of the probability esti-
mation task was guided by multiple scientific and practi-
cal considerations. As noted above, evaluating the output 
of a CAD system is a complex, multifaceted task (Man-
del, 2014), only one facet of which is addressed by the 
aforementioned probability estimation task. For instance, 
actual FDA-approved CAD systems not only categorize a 
given mammogram as positive or negative for cancer, but 
also indicate the region/s of interest (ROI/s) in the mam-
mogram. Moreover, under the relevant real-world clinical 
conditions, radiologists are not called upon to explicitly 
estimate probabilities; rather, they must ultimately decide 
whether to recall the patient for further testing (Keen 
et al., 2018; Lehman et al., 2015; Regge & Halligan, 2013; 
Yanase & Triantaphyllou, 2019).

The reasons why we limited the task in the present 
experiment to probability estimation were twofold: 
First, as alluded to above, taking on this complex, mul-
tivariate process as a whole at the outset would make 
the results hard to interpret, because of numerous pos-
sible confounds. On the other hand, starting by measur-
ing the perceived probabilities is an eminently principled 
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first step. Second, the anticipated practical difficulties 
of enrolling a sufficient number of radiologists willing 
to carry out a sufficient number of trials made it advis-
able to test the basic effect in radiological subjects before 
delving into a more complex study design. Thus, starting 
by focusing on a single, but fundamental, component of 
the overall process was a principled approach.

Data analysis
Data were analyzed using scripts custom-written in the 
R language. Conventional tests of significance were used 
when appropriate, and randomization tests (Manly & 
Navarro Alberto, 2021) were used otherwise. Corrections 
for multiple comparisons were carried out using the false 
discovery rate methods implemented by the R library 
stats (Benjamini & Hochberg, 1995). Regression analyses 
were carried out primarily using the R functions glm() 
and lm(). Normality and homoscedasticity of the data 
were tested using R libraries olsrr, and MASS (data not 
shown), and violin plots were drawn using the R library 
vioplot. To quantitatively compare two fitted general lin-
ear models, we used the generalized estimating equation 
method implemented by the R library geepack (Clogg 
et al., 1995; Yan & Fine, 2004; Yan et al., 2013).

Results and discussion
Radiologists’ cancer estimates deviate widely 
from the theoretically expected estimates
The radiologists’ reported (i.e., estimated) probabili-
ties are plotted against the corresponding theoretically 

expected probabilities (y and x axes, respectively) as vio-
lin plots in Fig.  1. In this figure, each ‘violin’ represents 
the data points for a single condition, i.e., a unique com-
bination of the four aforementioned probability values 
provided to the subjects during a given trial.

Three aspects of the reported probabilities are espe-
cially worth noting. First, the spread of the data within 
each violin indicates that the reported probabilities 
varied considerably across trials. The maximum and 
minimum difference between the reported vs. expected 
percent probabilities was 100 and -42, respectively. The 
mean difference was 30 ± 31 (standard deviation).

Second, the reported probabilities tended to be over-
estimates, in that they were generally higher than the 
expected probabilities (blue ‘X’ symbols and lines in 
Fig. 1A, B). Indeed, this overestimation was highly signif-
icant (1-tailed t-test, t = 9.66, df = 557.16, p < 2.2–16). This 
was especially notable for conditions in which the hit rate 
was 1.0, and the system decided that the mammogram is 
negative for cancer. In such cases, it follows straightfor-
wardly from the definition of hit rate that the probability 
of cancer is zero. Nonetheless, the subjects overestimated 
the probability in these cases as well (Fig. 1B, first 10 vio-
lins from left).

Third, the magnitude of the overestimation depended 
on the reported binary decision of the CAD system. That 
is, when the CAD system deemed the given mammogram 
positive for cancer, the radiologists’ estimated cancer 
probability was significantly higher than when the CAD 
system deemed the mammograms negative for cancer 

Fig. 1 Probability estimates reported by radiologists in Experiment 1. The estimated probability of cancer (y-axis) in Experiment 1 plotted against 
the corresponding theoretically expected probabilities (x-axis) as standard violin plots ((Thrun et al., 2020); also see inset at top right). Conditions 
in which the CAD system determined the given mammogram to be positive or negative for cancer are plotted in (A, B), respectively. Each violin 
denotes one condition, i.e., one unique combination of the four probabilistic values provided to the subject. The blue X symbols and line graphically 
denote the theoretically expected probabilities (also see x-axis labels). See text for additional details
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(1-tailed t-test, t = 9.6641, df = 557.16, p < 2.2 ×  10–16; cf. 
panels A vs. B in Fig. 1). This suggests, on the one hand, 
that the radiologists did take into account the binary 
decision of the CAD system. On the other hand, the con-
tribution of the binary decision to the trial-to-trial spread 
of the reported probabilities was not statistically signifi-
cant (1-tailed F test, F (279,279) = 1.0806, p = 0.259). We 
will revisit below the influence of the binary decision of 
the system on the radiologists’ decisions.

The observed effects are not fully accounted for by base 
rate neglect or ‘inverse fallacy’
Previous studies in other contexts have suggested that 
base rate neglect, where the subjects ignore the preva-
lence (or base rate) of an event, accounts for errors in 
reported probabilities (Kahneman & Tversky, 1972, 
1973). If this were true in the present case, the ‘full 
model’ in which the expected response is calculated using 
all four of the independent variables (i.e., the base rate, 
the binary decision of the system, and the hit and false 
alarm rates of the system) should be statistically indistin-
guishable from a corresponding ‘reduced model’ in which 
the expected response is calculated from all independ-
ent variables except the base rate (Clogg et al., 1995; Yan 
et al., 2013). However, the two models were significantly 
different from each other as determined by the general-
ized estimating equation (GEE) modeling method for 
comparing models (see Methods) (GEE model, ∆ = 0.17; 
p < 0.05, corrected; data not shown), indicating that base 
rate neglect did not fully account for the observed results 
in the present case. This effect was independently con-
firmed using stepwise regression modeling with or with-
out the base rate factor (data not shown).

Similarly, some previous studies have also suggested 
that the subjects’ reports in some comparable problem 
scenarios can be accounted for by the so-called inverse 
fallacy, whereby subjects mistake, implicitly or explicitly, 
the overall probability p(C|D) for its inverse, i.e., p(D|C) 
(for an overview, see (Koehler, 1996)). The responses 
expected from the inverse fallacy model were also signifi-
cantly different from the responses expected from the full 
model (GEE model, ∆ = -0.27; p < 0.05, corrected), indi-
cating that inverse fallacy did not fully account for the 
observed results in the present case either. Collectively, 
these results also suggest that conventional explanations 
do not adequately account for the observed effects in our 
case, and vindicate the approach of empirically charac-
terizing the relevant effects.

Relative influences of various potential contributing 
factors
To quantitatively characterize the factors that influenced 
the reported probability estimations, we regressed the 

reported probabilities on the four underlying independ-
ent variables (i.e., the base rate, the binary decision of the 
system, and the hit and false alarm rates of the system). 
The results showed that the base rate made a statistically 
insignificant contribution to the reported probability 
(Additional file  1: Table 1; row 2), indicating that the radi-
ologists underweighted the prevalence of breast cancer.

On the other hand, false positive rates had a highly 
significant effect on the reported probabilities (row 4). 
The binary decision of the CAD system also had a highly 
significant effect (row 5). Note that these two significant 
effects show only that the radiologists did not neglect (or 
underweight) the corresponding variables, but not neces-
sarily that the radiologists attached the precisely correct 
weight to these variables. This is because these effects 
could also arise if the radiologists attached too much 
weight to, i.e., overweighted, these variables.

Radiologists overweight the false alarm rates differently 
depending on the binary decision of the CAD system
To help determine if overweighting caused the afore-
mentioned significant effects, we carried out a one-way 
analysis of covariance (ANCOVA; binary decision x false 
alarm rate). Figure  2 plots the reported probabilities 
(y-axis in either panel) as a function of the false alarm 
rates (x-axis), and of whether the CAD system deemed 
a given mammogram positive or negative for cancer 
(Fig. 2A, B, respectively). The interaction effect between 
the false alarm rate and the binary decision is reflected by 
the fact that the best-fitting regression lines (solid lines) 
have different slopes between the two panels. That is, the 
contribution of the false alarm rate to the reported prob-
abilities depended on the binary decision of the CAD 
system (also see Additional file  1:  Table  2). Thus, the 
subjects took into account the system’s false alarm rates 
when the system found the mammogram to be positive 
for cancer, but not if it made a negative finding.

Importantly, the radiologists’ reported probabilities 
were significantly higher than the expected probabilities 
in both panels (dashed lines in Fig.  2; one-tailed rand-
omization tests; p < 0.05, corrected). Thus, the radiolo-
gists indeed overestimated the probabilities both when 
the CAD system decided that the mammogram was posi-
tive for cancer (Fig.  2A), and when the system decided 
the opposite (Fig. 2B).

Experiment 2: Interpretation of CAD system 
decisions by non‑professional subjects
As noted above, under the actual clinical conditions, 
radiologists using CAD system output are not called 
upon to estimate the probability of cancer as the subjects 
did in Exp. 1. Instead, radiologists must decide whether 
to recall the patient for further testing. For multiple 
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reasons outlined above, Exp. 1 did not examine the latter 
binary decision-making process, a lacuna that the present 
experiment was designed to address.

In Exp. 2, non-professional subjects were given the 
same four items of probabilistic information as radiolo-
gists. But the subjects were required, depending on the 
trial block, to either estimate the cancer probability or to 
decide whether to recall the patient for nominal ‘further 
testing’. In this sense, the procedures used in Exp. 2 were 
a superset of those used in Exp. 1.

Methods
Subjects
Twenty-five non-professional subjects (19 women and 
6 men; mean age, 22.8 yrs; median 23 yrs; range, 18–32 
yrs) participated in this experiment. Subjects were not 
screened for any prior training or expertise; all persons 
between 18 to 65 years of age with normal or corrected-
to-normal vision who volunteered for the study were 
enrolled.

Task paradigms
Each subject in this experiment carried out one of two 
tasks, depending on the trial block. The probability esti-
mation task (‘E’ task) was the same as the task in Exp. 1, 
in that the subjects were given the same four probabil-
ity parameters and were asked to estimate the probabil-
ity that the given mammogram was positive for cancer. 
There was, however, an add-on phase of the trial in this 
experiment that the subjects in Exp. 1 did not encounter: 
After the subjects estimated the cancer probability, they 
were presented a new screen in which they had to report 

how confident they were in their preceding cancer prob-
ability estimation using an on-screen slider that ranged 
from 0% (‘not at all confident’) to 100% (‘totally confi-
dent’). The rationale for requiring this confidence rating 
was that it allowed us to discern, among other things, 
the extent to which the subjects were confounded by the 
seemingly mathematical nature of the task, in which case 
they would tend to report low confidence on average.

The trials during the recall decision (‘D’) blocks were 
identical, except that instead of estimating the probability 
of cancer, the subjects had to make a binary decision as 
to whether or not to recall the patient (nominally for ‘fur-
ther testing’) given the aforementioned four probabilistic 
parameters. After they reported their recall decision, the 
subjects indicated their confidence in their binary deci-
sion using an on-screen slider as above.

Construction of trial blocks
We used the same repertoire of values as in Experiment 
1, i.e., two possible values each for base rate (0.005 and 
0.05), hit rate (1.0 and 0.95), and the decision of the CAD 
system (+ ve or −ve for cancer); and five possible val-
ues for false alarm rate (0.05, 0.25, 0.5, 0.75, 0.95). This 
resulted in 40 unique conditions.

All trials involving the E task were presented in their 
own block (‘E block’) of 40 randomly shuffled trials of the 
E type, where each trial represented one of the above 40 
conditions. Similarly, the D block consisted of 40 ran-
domly shuffled D-type trials.

Note that this design meant that the trials in the D and 
E blocks were mutually paired, so that for every trial in 
the E block that represented a given condition (i.e., a 

Fig. 2 The interaction between the false alarm rate and the binary decision of the system in Experiment 1, as revealed by one-way ANCOVA. For 
visual clarity, the data corresponding to the two decisions of the CAD system (mammogram positive or negative for cancer) are shown separately in 
(A and B), respectively. In either panel, each data point denotes a single trial, and the solid and dashed lines denote best-fitting regression line for the 
observed and the expected responses, respectively. See text for details
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given unique combination of values of the four probabil-
istic independent variables), there was exactly one corre-
sponding trial in the D block, and vice versa. This allowed 
us to compare the given subject’s response in a given 
D-type trial to their response in the E-type trial, and vice 
versa. The rationale for separating the two sets of trials 
each into a block of their own (rather than intermingling 
them within a single block) was that the two tasks were 
substantially different, as noted above. Separating the tri-
als into task-specific blocks helped simplify task instruc-
tions and minimize effects related to task switching (Kim 
et al., 2012).

Testing sessions. Prior to the start of the D blocks, we 
interactively explained the potential risks vs. benefits of 
the four possible outcomes of a recall decision (true and 
false positive, and true and false negative) to the subjects 
in simple, easy-to-understand language (Siu & Force, 
2016). We told the subjects that the weight they attached 
to the various risks and benefits was entirely up to them, 
and that they were not required to necessarily attach the 
same weight to all of them.

The subjects performed each block twice, in an alter-
nating fashion. The types of blocks were counter-rotated 
across subjects, so that 13 randomly selected subjects 
performed the blocks in an E-D-E-D block order, and the 
remaining 12 subjects performed them in the opposite 
(i.e., D-E-D-E) order. Prior to each block, subjects per-
formed practice trials, so as to (re)familiarize themselves 
with the task for the given block. The data from the prac-
tice trials were discarded.

The above design meant that each subject carried out 
a total of 160 trials, i.e., two repetitions of each of the 40 

E-type trials, and two repetitions each of the correspond-
ing 40 D-type trials.

Results and discussion
Cancer estimations of non‑professional subjects are 
comparable to those of radiologists
The cancer probability estimations of the non-profes-
sional subjects were comparable to those of the radiolo-
gists in three important respects. First, the estimations 
varied widely from one trial to the next (Fig.  3A, B). 
The maximum and minimum difference between the 
reported vs. expected percent probabilities was 99 and -7, 
respectively. The mean difference was 37 ± 27.

Second, non-professional subjects also significantly 
overestimated cancer probability (1-tailed t-test, 
t = 19.11, df = 2037.4, p < 2.2–16). The estimates of non-
professional subjects were significantly higher than those 
of radiologists (two-way ANOVA, subject type x condi-
tions; p < 0.05 for subject type). However, the estimates 
were more or less uniformly higher across the board, i.e., 
the magnitude of increase did not vary across the condi-
tions (p > 0.05 for the condition and interaction factors). 
This is important, because it suggests (albeit does not 
prove) that non-professional subjects attach similar—
albeit higher—weights to the underlying factors as radi-
ologists do.

Finally, just like the radiological subjects, the non-pro-
fessional subjects tended to overestimate the probability 
to a greater degree when the CAD system deemed the 
given mammogram positive for cancer, than when the 
system deemed it negative for cancer (cf. blue Xs and 
lines in Fig. 3A vs. B).

Fig. 3 Probability estimates reported by non-professional subjects during the E-type trials in Experiment 2. The data in this figure are plotted using 
the same conventions as in Fig. 1. The recall rates the same set of subjects during the paired D-type trials across the same conditions are shown in 
the same order in Fig. 5. See text for details
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One final respect in which the responses of non-pro-
fessional subjects significantly differed from those of 
radiologists was the reaction time: The reaction times of 
non-professional subjects (28.25  s ± 0.71) were slightly 
shorter than those of radiologists (39.55  s ± 1.43; one-
tailed t-test, t = 7.65, df = 636.64; p < 0.05; data not 
shown).

Regression analysis showed that both the false alarm 
rates and the binary decision of the CAD system made 
statistically significant contributions to the subjects’ 
estimations, while the contribution of the hit rates was 
statistically insignificant (Additional file  1: Table  3). In 
this respect, the response patterns of non-professional 
subjects were similar to those of radiologists (also see 
Fig. 4A, B and Additional file  1: Table 4).

One significant difference was that the base rate 
was a significant contributor to the responses of non-
professional subjects but not of radiologists (row 2 of 
Additional file  1:  Tables  1 and 3, respectively). Recall, 
however, that this significant effect does not necessar-
ily mean that the non-professional subjects correctly 
accounted for the variables, because these effects could 
also arise if the subjects attached too much weight to, i.e., 
overweighted, these variables.

Ultimately, the crucial similarity between the two sets 
of responses is that both sets of subjects significantly 
misestimated cancer probabilities. In this specific sense, 
the two sets of responses were comparable.

Recall decisions of non‑professional subjects closely reflect 
their cancer probability estimates
Across all 40 conditions, subjects decided to recall the 
patients for further testing an average of about 61% ± 5 

of the times (Fig. 5A, B). This recall rate was significantly 
higher than the corresponding expected probabilities of 
cancer (blue Xs and line; paired t-test, t = 13.18, df = 39, 
p < 0.05). The subjects were much likelier to recall the 
patients when the system decided that the mammo-
gram was positive for cancer than when it decided that 
the mammogram was negative for cancer (83% ± 2 and 
38% ± 5, respectively; 2-way ANOVA, CAD decision x 
recall rate; CAD decision: F (1,36) = 53.54, p < 0.05; recall 
rate: F (1,36) = 14.13, p < 0.05).

It is possible that inadequate weighting of the under-
lying probabilistic factors contributed to the recall deci-
sions. To help determine if this was the case, we carried 
out a logistic regression of the recall decisions (Addi-
tional file  1: Table 5). The results indicated that the false 
alarm rate and the decision of the system made highly 
significant contributions to the decision (rows 4 and 5). 
On the other hand, the contribution of the hit rate to the 
recall decisions was statistically insignificant (row 3). The 
base rate made a modest, but statistically significant con-
tribution (row 2). Taken together, these findings indicate 
that subjects failed to adequately weight the underlying 
probabilistic factors in making their recall decisions.

Note that while the above results show that the recall 
rates were high and represented an inappropriate weight-
ing of the underlying probabilistic factors, they do not 
by themselves necessarily mean that the recall rates 
were unduly high. This is because high recall rates can 
also arise if the subjects exercised an abundance of cau-
tion and recalled the patient when there was even the 
slightest chance that the mammogram was positive for 
cancer. However, one key observation suggests that the 
recalls were unreasonable at least in some cases: Subjects 

Fig. 4 The interaction between the false alarm rate and the binary decision of the system in Experiment 2, as revealed by one-way ANCOVA (binary 
decision x false alarm rate). The data are plotted in this figure using the same conventions as in Fig. 2. The numeric results of the ANCOVA are shown 
in Additional file  1: Table 4.
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recalled the patients at high rates even when the prob-
ability of cancer was actually zero (see ten left-most bars 
in Fig. 5B). This allows us to reject the hypothesis that the 
subjects always discerned the cancer probability accu-
rately, but simply had an extremely low threshold for 
recall.

To determine whether the subjects’ recall decisions 
were related to their cancer probability estimates, we 
used logistic regression to compare the recall decisions 
during the D-type with their paired cancer probability 
estimations during the E-type trials. The results showed 
that the cancer probability estimates could account for 
the recall rates in a highly significant fashion (β = -9.08, 
z = -3.29; p < 0.05, r2 = 0.49; also see Additional file  1: 
Table 6).

These results suggest (although by themselves do not 
prove) that the subjects’ recall decisions closely reflect 
their perceived probability that the given mammogram 
was positive for cancer. That is, the subjects were likely 
to have recalled the patients if they perceived (however 
correctly or incorrectly) that the given mammogram was 
positive for cancer.

Recall decisions were not attributable to differences 
in confidence
Analysis of the subjects’ reported confidence rat-
ings showed that the ratings did not differ significantly 
between E vs. D tasks (E task, 71% [mean] ± 19 [SD]; 

D task, 71% ± 22; paired two-tailed t-test, t = -1.02, 
df = 1999, p > 0.05; see Additional file  1: Figure S1).

Moreover, the reported confidence of the subjects 
during the D trials did not vary significantly based 
on whether or not the subjects decided to recall the 
patient (recall yes: 71% ± 21; no: 71% ± 23; two-tailed 
t-test, t = 0, df = 2422, p > 0.05; data not shown), indi-
cating that the subjects’ decision to recall the patient 
or not was not based on how confident they felt in 
their decision. We obtained qualitatively similar 
results when we repeated this analysis using the confi-
dence reported during the E task (recall yes: 68% ± 20; 
no: 74% ± 18; two-tailed t-test, t = 0, df = 2422, 
p > 0.05; data not shown). Together, these results indi-
cate that the subjects felt confident about their deci-
sions regardless of whether they decided to recall the 
subject; it was not as though they tended to recall the 
subject if they felt unsure about whether the subject 
had cancer. Note also that the subjects are unlikely to 
have expressed high confidence in their responses if 
they felt like they were basing their responses largely 
on guesswork.

Collectively, the above results show that the cancer 
estimation performance of non-professional subjects is 
directly comparable to that of the radiologists. They also 
show that the subjects’ recall decisions closely reflected 
their perceived likelihood of cancer (as opposed to the 
actual likelihood of cancer). This helps highlight, among 
other things, the fact that measuring the estimated (or 
perceived) likelihood of cancer is not just an exercise 

Fig. 5 Percentage of patients recalled by non-professional subjects during D-type trials in Experiment 2. A, B Conditions in which the CAD system 
determined the given mammogram to be positive or negative for cancer (A, B, respectively). Note that the prominent effect of the five false alarm 
rate values (0.05, 0.25, 0.5, 0.75, and 0.95, in order) is especially apparent in panel B as a broadly repeating pattern of five bars starting from far left. 
The blue X symbols and line graphically denote the theoretically expected probabilities (also see x-axis labels). The cancer probabilities estimated by 
the same set of subjects during the paired E-type trials across the same conditions are shown in the same order in Fig. 3. See text for details
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in scientific curiosity. Rather, it helps account for key 
aspects of the recall decisions.

General discussion
Our results are significant in five main respects. First, 
they empirically establish that both practicing radiolo-
gists and non-professional subjects commit significant 
errors in estimating the actual probability of cancer based 
on probabilistic information. Moreover, both sets of sub-
jects significantly overestimate the probability of cancer, 
and do so in similar ways. This indicates that the ten-
dency to overestimate cancer probabilities is not idiosyn-
cratic to subjects in either group.

These findings are significant in and of themselves, 
quite apart from what they mean for recall decisions 
(which we address further below). While clinicians are 
rarely, if ever, called upon to formally estimate prob-
abilities, probabilistic reasoning in general does have 
profound clinical implications. Indeed, in his influential 
study that used the same probability estimation paradigm 
as ours, Eddy (1982) argued that “errors [in probabilis-
tic reasoning] threaten the quality of medical care”, and 
that “the power of formal probabilistic reasoning pro-
vides great opportunities for improving the quality and 
effectiveness of medical care”. Many subsequent studies 
of CAD use have echoed this sentiment (de Hoop et al., 
2010; Keen et al., 2018; Lehman et al., 2015; Regge & Hal-
ligan, 2013; Yanase & Triantaphyllou, 2019).

Second, and even more importantly, we show that 
probability estimations closely reflect the recall decisions, 
at least in the case of non-professional subjects. This is 
not necessarily to say that the subjects explicitly base 
their recall decisions on their estimations of cancer prob-
ability; it is possible that both cognitive processes reflect 
a third, unknown process.

Note, parenthetically, that our study design made it 
possible to reject, at least for non-professional subjects, 
the hypothesis that recall decisions always reflect a rea-
sonable, if hypervigilant, strategy. This is because the 
subjects recalled patients even when the actual probabil-
ity of cancer was literally zero.

Our study also highlights the potential usefulness of 
studying selected aspects of the clinical decision-making 
process in non-professional subjects. For instance, our 
results make it reasonable to hypothesize that the close 
relationship between probability estimations vs. recall 
decisions we demonstrate in non-professional subjects 
also holds for practicing radiologists. The design of Exp. 
2 provides a straightforward template for testing this 
hypothesis.

Third, our results reveal three different, signifi-
cant sources of the estimation errors by radiologists: 
(1) the neglect of the prevalence of breast cancer, (2) 

overweighting of the binary decision of the CAD system 
in each individual case (i.e., ‘individuating’ information), 
and (3) the binary decision-dependent neglect of the false 
alarm rate. Note that the latter two factors pertain to the 
CAD system per se (as opposed to the base rate, which is 
not a property of the CAD system). Somewhat surpris-
ingly, non-professional subjects were better at accounting 
for the base rate, although their overestimations were sig-
nificantly worse. The reasons for these differences remain 
to be established.

Importantly, our results empirically demonstrate that 
observed estimation errors were not fully attributable 
to well-known effects such as base rate neglect or over-
weighting of the individuating information by either 
group of subjects. That is, while these effects did contrib-
ute to the observed cancer probability estimates, they did 
not fully account for them. Incidentally, this finding high-
lights the importance of having empirically measured 
these errors in the specific context of interpreting CAD 
results, because our results could not have been pre-
dicted by simply extrapolating from the previous studies 
of the underlying estimation problem in other contexts 
(for a review, see (Mandel, 2014)).

Fourth, our study identifies a novel effect that sig-
nificantly contributes to the estimation errors by both 
radiologists and non-professional subjects, namely the 
conditional neglect of false alarm rates. The neglect of 
the false alarm rate has been previously reported in the 
context of legal decision-making (Dahlman et al., 2016). 
However, to our knowledge, the present study represents 
the first report of a conditional neglect of the false alarm 
rate in any decision-making context.

This effect is intriguing, because it means that subjects 
take the system’s false alarm rates into account if the 
system decides that the given mammogram is positive 
for cancer, and neglect the false alarm rates otherwise. 
One possible explanation of this is that if the CAD sys-
tem reports that the given mammogram is positive for 
cancer, then the subjects consider the false alarm rate in 
order to help them determine whether or not the given 
positive report is a false positive (or false alarm). On the 
other hand, if the CAD system determines that the given 
mammogram is negative for cancer, the subjects ignore 
the false alarm rate, presumably because the false posi-
tive rate is moot when the system’s finding is negative to 
begin with. There is a certain intuitive logic to this.

Note, incidentally, that the fact that the subjects do take 
false alarm rates into account does not necessarily mean 
that the subjects attach the correct weight to the rates. 
Indeed, our results indicate that the radiologists do not 
attach proper weight to this factor (i.e., they overweight 
it). Further studies are needed to fully characterize this 
effect.
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Finally, another significance of our study is that we 
quantitatively estimate the effect of each of the aforemen-
tioned contributing factors in both estimation and recall 
tasks. These estimates also confirm that CAD estima-
tion errors reflect a unique weighted combination of the 
underlying contributing factors. This also suggests that 
there is no unifying explanation that a priori accounts for 
all such phenomena. The closest one can come to a unify-
ing framework of explanation is that there is a finite set 
of potential contributing factors that potentially apply to 
all problems of this type, but the observed results in any 
given problem scenario depend on the relative weights of 
the various factors in that problem scenario. Since there 
is no known way of predicting these weights a priori, one 
must empirically estimate these weights (i.e., the relative 
contributions) of the various factors in each case. Again, 
this vindicates our empirical approach.

A corollary of this is that it can be misleading and 
counterproductive to attribute such errors a priori to 
a well-known cause, such as base rate neglect, or over-
weighting of the individuating information.

Probability estimation errors in other contexts
Neglect of the base rate and the overweighting of the 
individuating information have been shown to cause esti-
mation errors in other contexts (Fischhoff & Bar-Hillel, 
1984; Kahneman & Tversky, 1973; Mandel, 2014). Our 
results empirically demonstrate these effects in the con-
text of CAD result interpretation. The neglect of the false 
alarm rate has been previously reported in the context of 
legal decision-making (Dahlman et  al., 2016). However, 
to our knowledge, the present study represents the first 
report of a conditional neglect of the false alarm rate in 
any decision-making context.

Some previous studies in other contexts have shown 
that other approaches, such as appropriately modifying 
the statement of the problem and decision-work flow, 
can also reduce estimation errors (Hoffrage & Gigeren-
zer, 2004; Mandel, 2014; Wood, 1999). Our preliminary 
study did not address such admittedly important com-
plexities because it simply aimed to empirically establish 
the existence of the aforementioned estimation and deci-
sion errors and their sources, and not how to reduce the 
errors.

Additional caveats and future directions
In addition to the various caveats specific to our study 
noted in context throughout this report, it is worth not-
ing one general caveat that applies to our study and more 
broadly to all laboratory studies of clinical phenomena: 
Such studies simplify, out of both practical and scien-
tific necessity, the underlying clinical problems. We have 
noted throughout this report the various ways in which 

our study does this. However, it is worth noting, without 
glossing over the limitations of our study, that our results 
would have been essentially uninterpretable if we had not 
simplified the study design by removing these potential 
confounding variables. For instance, if we had presented 
the actual mammograms to the subjects, we would not 
have been able to ascertain the contribution of the afore-
mentioned four pieces of probabilistic information about 
the CAD system to the subjects’ responses, because of 
the potentially confounding contributions of the mam-
mogram and how the subjects perceived it. In removing 
these confounds and presenting the results along with 
the applicable caveats as we do, our study adopted this 
standard tradeoff: Seek to clarify by simplifying.

Much future work is needed to address the many ques-
tions raised by our study. These include, but are not 
limited to, ascertaining whether and to what extent our 
results, especially from non-professional subjects, are 
generalizable to actual clinical conditions.

An important practical implication of our results is that 
that training subjects to properly interpret the output of 
CAD systems may help improve the efficacy of CAD sys-
tems in mammography (Yanase & Triantaphyllou, 2019). 
It may also help if the systems explicitly provide an addi-
tional piece of information, namely the expected prob-
ability of cancer for each given mammogram.
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