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Summary

When we perceive a visual object, we implicitly or explicitly
associate it with a category we know [1-3]. It is known that
the visual system can use local, informative image fragments
of a given object, rather than the whole object, to classify it
into a familiar category [4-8]. How we acquire informative
fragments has remained unclear. Here, we show that human
observers acquire informative fragments during the initial
learning of categories. We created new, but naturalistic, classes
of visual objects by using a novel “virtual phylogenesis” (VP)
algorithm that simulates key aspects of how biological cate-
gories evolve. Subjects were trained to distinguish two of
these classes by using whole exemplar objects, not fragments.
We hypothesized that if the visual system learns informative
object fragments during category learning, then subjects
must be able to perform the newly learned categorization
by using only the fragments as opposed to whole objects.
We found that subjects were able to successfully perform
the classification task by using each of the informative frag-
ments by itself, but not by using any of the comparable, but
uninformative, fragments. Our results not only reveal that
novel categories can be learned by discovering informative
fragments but also introduce and illustrate the use of VP as
a versatile tool for category-learning research.

Results

Using VP to Create Shape Classes

The VP algorithm generates naturalistic object categories by
emulating biological phylogenesis (see Supplemental Data
available online). With VP, we created three classes of novel
objects, classes A, B, and C and used 200 exemplars from
each (Figure 1). Note that the three classes are very similar
to each other, so that distinguishing among them is nontrivial
(see below and Figure S1). Moreover, no two objects, including
objects within a given category, were exactly alike, so that
distinguishing among them required learning the relevant
statistical properties of the objects and ignoring the irrelevant
variations. Finally, note that the differences between cate-
gories arose spontaneously and randomly during VP, rather
than as a result of externally imposed rules.

Extracting Informative Fragments

We isolated ten fragments (“Main” fragments, Figures 2A and
2B) that were highly informative for distinguishing class A from
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class B (the main task in experiment 1, see Supplemental Data
for details). We also isolated ten “Control” fragments (Figures
2C and 2D) and ten “IPControl” fragments (Figure S2) that
were uninformative for the main task but visually comparable
to the main fragments. The mutual information (Ml) value of
a given fragment quantifies the information it conveys about
agiven category. The higher the fragment’s MI, the more useful
the fragment is for categorization. The MI values of all
fragments used in this study are listed in Supplemental Data.

Testing the Informativeness of Individual Fragments

The experiments consisted of training the subjects on whole
objects and then testing them on fragments. Because only
whole objects, not fragments, were used during training,
subjects were not aware of the fragments or required to learn
them. After the subjects were trained in the task, we tested the
extent to which subjects were able to perform the classifica-
tion task by using the fragments, each presented individually
(see Figure 3 and Supplemental Data). We hypothesized that
if the subjects learned informative object fragments during
the training, then the subjects must be able to perform the
categorization task by using the individual main fragments,
but not the control fragments.

The observed performance closely matched these predic-
tions. Figure 4A shows the average performance of six
subjects using the main fragments. Subjects performed signifi-
cantly above chance with each of the fragments (binomial tests,
p <0.05in each case). Moreover, with one exception (see below),
the performance of each individual subject with each main frag-
ment was indistinguishable from his/her performance with
whole objects during the final two training sessions (binomial
tests, p > 0.05, data not shown). The only exception to this
was the performance of one subject with main fragment #9, for
which she classified the object containing the fragment as A in
only 1/16 (6.25%) of the trials (also see below). Altogether, these
results indicate that the subjects were able to categorize the ob-
jects on the basis of each of the fragments alone and that the
performance with the fragments was generally indistinguishable
from the performance of the subjects with the whole object.

By contrast, subjects were unable to perform the task above
chance levels by using any of the control or IPControl frag-
ments (Figures 4B and 4C; binomial tests, p > 0.05). That is,
subjects were about equally likely to classify an object as
belonging to class A or class B on the basis of a given control
or IPControl fragment. Thus, although all three types of frag-
ments belonged to class A, only the main fragments were likely
to be assigned to class A.

To ensure that above results were not a function of a fortu-
itous designation of object classes, we performed experiment
2 in which we repeated the design of experiment 1, but with
a different set of class designations, whereby the main task
was to distinguish class C from class B (see Figure S4). A
different set of four subjects participated in this experiment.
The results of this experiment were similar to those in experi-
ment 1 (Figure S5).

Additional analyses indicated the performance showed no
improvement during the testing phase of the experiment,
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Figure 1. Generating Naturalistic Shape Classes
by “Virtual Phylogenesis”

(A) The VP algorithm emulates biological evolu-
tion in that in both cases, novel objects and
object classes emerge as heritable variations
accumulate selectively. In the present study, we
used a class of novel objects called “digital
embryos,” which develop from a given parent ob-
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ject through simulated embryonic developmental
processes [17]. At each generation G, selected
embryos procreate, leading to generation G, 1.
The progeny inherit the shape characteristics of
their parent but accrue random shape variations
of their own as they develop. Thus, children of
a given parent constitute a shape class. In the
present study, embryos were grown for four
generations with the VP algorithm, starting from

a single common ancestor, an icosahedron.
Three shape classes (A, B, and C) were chosen
at generation n = 4, each with ~1500 “siblings.”

Note that the entire object-generation process
operated completely independently of the frag-

ment-selection process or any other classifica-
tion scheme. For larger images of exemplar
objects from each class and for a demonstration
that the categorization task is nontrivial and can-
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not be performed without learning the relevant
classes, see Figure S1.
(B) A metric multidimensional scaling (MDS) plot

of the 600 objects, 200 each from class A, B, and C, used in this study. Pixel-wise correlations of gray-level values were used as the input to MDS. Each
data point represents one individual object, and the plotting symbol (A, B, or C) denotes the class to which the object belonged. MDS plots the data points
so as to cluster similar data points together and disperse dissimilar data points from each other (for details, see [9, 18]). The values on either axis denote the
class distance measures used by the MDS. Note that the two axes have different scales. The objects of the three classes formed three nonoverlapping
clusters (ellipses), so that each cluster contained all the objects, and only the objects, of a given class.

indicating that the subjects learned the fragments during the
training phase, i.e., before the testing began (see Figure S6).

Necessity of Prior Training
In additional experiments, subjects were tested with in-

formative fragments without having learned the categories
beforehand (i.e., with the training phase omitted). Six subjects
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were used, five of whom also participated in experiment 1
above and one who participated in experiment 2. All subjects
performed at chance levels (binomial tests, p > 0.05;
Figure 4D). The performance was also indistinguishable from
chance when the testing was preceded by training with similar,
but task-irrelevant object categories (Figure 4E). This confirms
that the categorization task required learning and in particular

Figure 2. Informative Object Fragments

(A) Main fragments, which are 20 x 20 pixel frag-
ments of objects from class A that are useful for
distinguishing class A from class B (main task).
(B) Location of the main fragments, overlaid on
a typical object from class A. Fragment borders
are outlined in yellow for clarity.

(C) Control fragments, which are fragments of
objects that are not useful for the main task
from class A (see Supplemental Data for details).
(D) Location of the control fragments.
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that the subjects could not perform the task during the testing
phase by simply comparing the given fragment to the two
whole objects in the display.

Learning Fragments Was Not Necessary

It is clear from the metric multidimensional scaling (MDS) plot
of the three classes in Figure 1B that exemplars form three
nonoverlapping clusters, each corresponding to one of the
classes. The three classes are obviously linearly separable in
this plot, as evident from the fact that one can draw a straight
line separating any class from the other two. The fact that the
projection found by MDS is linear [9] means that the original
images are also linearly separable (in the pixel space).
Therefore, subjects could have learned to separate the
categories with complete images and did not have to learn
object fragments.

Discussion

Our study is novel in two important ways. First, it reveals that
informative fragments are learned during category learning.
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Figure 3. The Testing Paradigm

A test object (center) and two sample objects,
one from each class (left and right), were simulta-
neously shown. The test object was occluded by
a translucent surface with a hole, such that only
the given object fragment was visible, unoc-
cluded, through the hole, and the location of the
fragment relative to the overall object was appar-
ent through the translucent occluder. Subjects
had to classify the object into the class exempli-
fied by the sample object on the left or right on the
sole basis of the fragment visible through the
hole. Subjects were informed that only the frag-
ment, but not the darkened remainder of the
test object, was useful for the task. See Supple-
mental Data for details. The fragment shown in
this figure is the same as fragment 5 in Figures
2A and 2B.

Second, it illustrates VP as a potentially powerful new tool
for category-learning research.

Fragment Learning as a Part of Category Learning
Our results indicate that subjects learn informative, intermedi-
ate-complexity fragments as a matter of course when they
learn new object categories, even when they were not explicitly
required to learn the fragments. In other words, fragment
learning was incidental to category learning. This result is sig-
nificant because it straightforwardly links category learning with
categorization, in that informative fragments play arole in both.
The performance of the subjects was a function of the task
relevance of the fragments because subjects did not consis-
tently associate task-irrelevant fragments to learned cate-
gories, even when the fragments were otherwise visually
interesting or were informative for distinguishing the objects
from another class. Together, these results reveal, for the first
time, that humans selectively learn informative fragments as
a part of category learning. Note that it would not have been
possible to elucidate this by testing fragments from familiar
categories (e.g., faces or cars; q.v. [7, 8].) because objects of

Figure 4. Classification Performance Using
Fragments

In each panel, each bar shows the average
percentage (+SEM) of trials in which the subjects
classified a given fragment as belonging to class
A. The thin dotted line denotes 50%, or chance
level performance. The thick black lines in the
background in (A) denote the mean (solid line)
and the SEM (dashed lines) of the subjects using
whole objects during the last two sessions of
training.

(A and B) Performance in experiment 1a (six
subjects) with main fragments (A) and control
fragments (B).

(C) Performance in experiment 1b with IPControl
fragments (three of the six subjects). The IPCon-
trol fragments are shown in Figure S2. The perfor-
mance with main fragments from experiment 1b
is shown in Figure S3.

(D) Performance with main fragments without
prior training. Subjects were tested with the
same paradigm as above, but without any prior
training in the categorization task. The data are
averaged from six subjects.

(E) Testing with irrelevant training. Data are
shown from one subject. The subject was trained
in a similar, but irrelevant, categorization task
and tested with the main fragments with the
same paradigm as above.

|||
"

1PControl Fragments



Current Biology Vol 18 No 8
600

these categories are frequently seen occluded, so that
fragment learning could be attributed to the necessity for over-
coming occlusions.

In previous studies of novel category learning, the algorithm
for generating novel objects depended on the algorithm for
classifying them into categories [1, 2], whereas the two were
independent in our case, as they are in nature. To the extent
that our stimuli and the experimental conditions reflected
category learning under natural conditions, our results indicate
that such incidental learning of fragments may be a common
principle of learning of natural object categories (see below).

Subjects’ performance with task-relevant fragments was
comparable to performance with the whole objects, suggest-
ing that the learning of each of the fragments could, in
principle, account for all or most of the category acquisition.
Moreover, subjects performed close to perfect with most indi-
vidual task-relevant fragments, indicating that the subjects
were able to acquire most of the information conveyed by
the individual task-relevant fragments (all of which had Mis
at or near 1, see Supplemental Data).

Some models of perceptual learning, most notably the
reverse-hierarchy theory [10], have suggested that subjects
learn local features only when more global features do not
suffice. In brief, reverse-hierarchy theory posits that learning
takes place in spatially global-to-local fashion, such that the
visual system initially learns large-scale features relevant to
the task and “resorts” to finer-scale features when the large-
scale features do not suffice. In our case, it was clearly not
computationally necessary to learn the fragments because
the tasks could be performed on the basis of whole objects
(see Figure 1B). One reason why subjects nonetheless learned
the fragments may be that the fragments were highly informa-
tive about the task in our case. Another, mutually nonexclusive
possibility is that fragments represented the optimal spatial
scale for learning in this case because the individual fragments
were small enough to fit in the fovea, whereas it would have
necessitated integration of information across multiple fixa-
tions to perform the task at level of the whole object. Further
experiments are needed to resolve these issues.

Implications for the Mechanisms of Category Learning

Two previous studies, Harel et al. [7] and Lerner et al. [8], have
examined the extent to which informative fragments support
categorization of objects into familiar categories. Both showed
that the ability of subjects to decide whether a given fragment
was a part of a familiar object (e.g., a car or a face [7]) corre-
lated with the Ml of the fragment. Our study differed from these
previous studies in several key respects, three of which are
particularly worth noting. First, by using novel stimuli classes,
we were able to study category learning, rather than just cate-
gorization. Second, because we controlled subject training,
our fragments were extracted from the same set of images
used by subjects during category learning. Third, we elimi-
nated the possibility that the subjects might have learned the
fragments out of necessity (e.g., to cope with occlusions) by
ensuring that (1) the training images were completely un-
occluded and (2) the classes were linearly separable, so that
the categorization tasks could be performed on the basis of
whole objects.

Our experiments did not test whether new categories can be
learned solely from informative fragments. This is because our
goal was to study learning under natural viewing conditions. In
general, views strictly confined to informative fragments are
highly unlikely under natural viewing conditions. Our result

that subjects learned informative fragments even when pre-
sented with whole objects is therefore of greater relevance
to natural vision.

Usefulness of VP in Categorization Research

Apart from the fact that the VP algorithm represents a novel
method of creating object categories (c.f., “Greebles” [3,
11]), the resulting categories have several desirable features
for the study of categorization and category learning. First,
the categories have measurable, but randomly arising,
within-class shape variations (c.f., [12, 13]). In most of the
earlier studies using object categories created by compositing
shape primitives, there tends to be little or no within-class
variation (for reviews, see [14-16]). However, in natural scenes,
two exemplars of a given category are seldom identical.
Second, if necessary, both within-class variants and
between-class variants in VP can be artificially selected to fit
desired distributions (although we did not impose any such
distributions in the present study). This means that the cate-
gories can be generated on the basis of, or independently of,
an a priori classification algorithm, as desired. Third, VP can
be used to generate a hierarchy of categories, directly analo-
gous to the phylogenetic hierarchy of categories of biological
objects in nature, so that VP can be a useful tool for exploring
our hierarchical understanding of natural objects [1-3, 13, 16].
Finally, note that although we used “digital embryos” as the
substrate for VP in the present study (Figure 1A), any virtual
object, biological or otherwise, real-world or novel, can be
used as a VP substrate and the algorithm can be readily mod-
ified to simulate a more complex phylogenetic process (e.g.,
convergent evolution, in which different taxa, such as whales
and fish, come to resemble similar visual categories). Alto-
gether, VP represents a powerful and versatile tool for
generating naturalistic categories.

Supplemental Data

Additional Results, Experimental Procedures, seven figures, and two tables
are available at http://www.current-biology.com/cgi/content/full/18/8/597/
DC1/.
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The Categories Used Were Fine-Grained, and the
Classification Task Was Nontrivial

One concern about the testing paradigm we used (Figure 3) is
that the subjects can “cheat,” i.e., do the task by comparing
a given fragment to the corresponding parts of individual sam-
ple objects from the relevant categories. Figure S1 may be
used to convince oneself that it is not possible to do the task
reliably in this fashion. Choose a fragment of interest from
a given object, but do not look up its class designation. Next
choose one object each from class A and class B. Assign the
fragment to either category by comparing the chosen fragment
to the chosen objects. Repeat this several times for different
objects and fragments and estimate your performance for
each fragment. Empirical data show that, although the

S1

subjects could in principle adopt this strategy, in practice
they do not do so (Figures 4D and 4E).

Fragments Were Learned during Training and Not Testing
Although the performance with the main fragments during the
testing phase was comparable to the performance with whole
objects during training, it is possible that at least some of the
learning took place during the testing phase, especially
because the subjects encountered the fragments repeatedly
during the testing phase. This issue is germane to whether
fragment learning accompanies category learning per se. It is
unlikely that the subjects learned fragments during the testing,
both because no feedback was provided during testing and
because no more than 50% or 33% of the fragments (in exper-
iment 1 or 2, respectively) were informative about the task.

Figure S1. Exemplar Objects from the Three VP Object Classes

Four objects are shown from each class in a randomly intermingled fashion. Note that it is difficult to correctly classify the objects into the three correct
classes without learning or knowing the classes. The class designations are shown at the bottom of the figure.



S2

IPControl Fragments

F"h."" N
Ld‘ﬂ f

Figure S2. IPControl Fragments Used in Experiment 1b

IPControl fragments used in experiment 1b (A) and the location of the frag-
ments (B). The fragments are overlaid on a typical object from class A. The
behavioral data from these fragments are shown in Figure 4C. See text for
details.

Nonetheless, we examined the data for evidence of learning
during the testing. Figure S6 shows the performance of the six
subjects in the main task experiment 1a during the first and the
last session of testing. The performance improved for no sub-
ject. Indeed, the performance showed a modest decrease
overall, although the decrease was statistically insignificant
(one-tailed Mann-Whitney test, p > 0.05). Performance with
control and IPControl fragments, or the reaction times for all
three fragment types, also showed no significant change dur-
ing testing (not shown). Results from experiments 1b and 2
were qualitatively similar (not shown). Together, these results
indicate that subjects had learned the informative fragments
by the end of the training session, i.e., before the testing began.

The Classification Performance Is Highly Correlated

with the Mutual Information of the Individual Fragments

To test the extent to which the classification performance is
determined by the mutual information (Ml) value of the main
fragments, we isolated a different set of main fragments (not
shown) with a range of low-to-high MI values (x axis). We
then tested the categorization performance by using each of
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Figure S3. Performance with Main Fragments in Experiment 1b

Each bar shows the average percentage (+SEM) of trials in which the sub-
jects classified a given fragment as belonging to class A. The thin dotted line
denotes 50%, or chance level performance. The thick black lines in the
background denote the mean (solid line) and the SEM (dashed lines) of
the subjects with whole objects during the last two sessions of training.

these fragments with the same training and testing procedure
as above. This figure shows the average categorization perfor-
mance (xSEM) of four subjects for each fragment. The thin
dotted line denotes chance level performance. The perfor-
mance was highly correlated with the Ml values (correlation
coefficient r, 0.86; p < 0.05), consistent with previous studies
[S1, S2].

These results indicate that main fragments with high Mi
values can be expected to elicit correspondingly high perfor-
mance. Therefore, the high performance elicited by the main
fragments in experiments 1a, 1b, and 2 (Figures 4A, S4, and
S5) is directly attributable to the fact these fragments had MI
values at or near 1 (see Tables S1 and S2 below).

In some experimental contexts, performances at or near
100% are potentially problematic because they may reflect
response saturation, thereby making it difficult to compare
performances across the various conditions. However, high
performance is not problematic in our context, in which the
comparison of interest is between the main versus control
fragments and not across the various main (or control) frag-
ments. Indeed, high performance is advantageous in our con-
text because the data from various main (or control) fragments
amount to independent measurements of the corresponding
category-learning effect.

Overlap among Fragments

In both experiments 1 and 2, the fragments overlapped with
each other in some cases. For instance, the ten main frag-
ments in experiment 1 occurred in four nonoverlapping clus-
ters in two different regions of the embryo (top center and far
right in Figure 2B). The largest of these clusters consisted of
five fragments, 0, 1, 3, 4, and 6, with fragments with 1 and 6
mutually nonoverlapping. The second cluster consisted of
fragment 2, which was close to, but did not overlap, the first
cluster. The third cluster consisted of fragments 5, 8, and 9,
and fourth cluster consisted of fragment 7 by itself. The ten
control fragments in this experiment also showed comparable
clustering (Figure 2D). We decided against excluding frag-
ments on the sole basis of overlap, because they were judged
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Figure S4. Fragments Used in Experiment 2

(A) Main fragments.

(B) Location of the main fragments, overlaid on a typical object from class C.
(C) Control fragments.

(D) Location of the control fragments.

(E) IPControl fragments.

(F) Location of the IPControl fragments. See text for details.

to be mutually dissimilar by an objective measure (see Supple-  Supplemental Experimental Procedures
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Using VP to Create Naturalistic Object Classes
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Figure S5. Performance in Experiment 2

In (A)-(C), each bar shows the average percentage (+SEM) of trials in which the subjects classified a given fragment as belonging to class C. The thin dotted
line denotes 50%, or chance level performance. The thick black lines in the background in (A) denote the mean (solid line) and the SEM (dashed lines) of the
subjects with whole objects during the last two sessions of training.



S4

1(|)0

% Classified as Class A
(+/- across-subject SEM)

f !
lof4 4o0f4
Testing Session

Figure S6. Performance in the Main Task over the Course of Testing in
Experiment 1a

The performance of each subject (gray lines) during the first and the last (i.e.,
fourth) sessions of testing show no evidence of learning during testing. (The
data from the intervening sessions are omitted for visual clarity.) The gray
line denoted by the arrow represents overlapping data from two subjects.
The thick black line denotes the average of all six subjects.

by processes such as natural selection, genetic drift, extinction, etc. (for
a rigorous exposition, see [S3]). Equivalently for the present purposes,
biological categories can also arise through externally imposed selection,
such as in the breeding of farm animals and plants. In order to keep the
origin of the categories as transparent as possible, the version of the VP
algorithm used in this study only simulates the bare essentials of the phylo-
genetic process (see Discussion).

In the VP algorithm, shape variations among objects of a given generation
arise randomly. All variations are heritable in principle in that each object
starts as an exact replica of its parent and develops further on its own.
Selection is externally imposed and consists of the fact that at each gener-
ation, only some of the objects are allowed to generate descendents. The
children of a given parent constitute an object class (Figure 1A). We empha-
size that the goal of the VP algorithm was not to develop a realistic simula-
tion of evolution per se but rather to create naturalistic object categories by
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Figure S7. Categorization Performance as a Function of Ml Values of the
Main Fragments

Table S1. Mutual Information of Individual Fragments in Experiment 1

Fragment Type # Belonged to Category Categorization Task Mi

Main

0A A versus B (main task) 1.0
1A A versus B (main task) 1.0
2A A versus B (main task) 1.0
3A A versus B (main task) 1.0
4 A A versus B (main task) 1.0
5A A versus B (main task) 0.95
6 A A versus B (main task) 0.95
7A A versus B (main task) 0.95
8A A versus B (main task) 0.95
9A A versus B (main task) 0.95
Control

0A A versus B (main task) 0

A versus C (control task) 1.0
1A A versus B (main task) 0

A versus C (control task) 1.0
2A A versus B (main task) 0

A versus C (control task) 1.0
3A A versus B (maintask) 0

A versus C (control task) 1.0
4 A A versus B (main task) 0

A versus C (control task) 1.0
5A A versus B (main task) 0.01

A versus C (control task) 1.0
6 A A versus B (main task) 0

A versus C (control task) 1.0
7A A versus B (main task)  0.01

A versus C (Control task) 1.0
8A A versus B (main task) 0.03

A versus C (control task) 1.0
9A A versus B (main task) 0

A versus C (control task) 1.0

IPControl

0A A versus B (main task) 0.05
1A A versus B (main task) 0.05
2A A versus B (main task) 0.05
3A A versus B (main task)  0.05
4 A A versus B (main task) 0.06
5A A versus B (main task) 0.06
6 A A versus B (main task) 0.06
7A A versus B (main task) 0.07
8A A versus B (main task) 0.07
9A A versus B (main task)  0.07

simulation of morphological aspects of phylogenesis. For this reason, the
VP algorithm bypasses many of the important complexities of biological
evolution, such as the reshuffling of heritable characteristics through sexual
reproduction and the fact that multicellular organisms typically develop
from a single-cell embryo. Moreover, selection is imposed externally in
our case. Nonetheless, it is worth noting that the categories arise naturally
in VP, by means of selective propagation of heritable variations.

VP algorithm can, in principle, use any virtual object as a substrate. In the
present study, we used a previously described type of naturalistic objects
called digital embryos [S4]. In brief, the digital-embryo algorithm can create
avirtually endless variety of naturalistic 3D shapes by simulating the natural
processes of embryonic development, such as morphogen-mediated cell
division, cell growth, and cell movement.

By using VP, we created three novel classes of digital embryo objects,
classes A, B, and C, each containing ~1500 objects. It is important to
emphasize that the classes were generated without any regard to whether
or how they could be classified and whether they contained any fragments
useful for this classification.

We arbitrarily selected 200 embryos from each class for use in the exper-
iments. Each 3D object was rendered without externally applied texture and
with the same viewing and lighting parameters against a neutral gray back-
ground in the OpenGL graphics environment (www.opengl.org) with the
software developed by Brady [S4] (also see http://www.psych.ndsu.
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Table S2. Mutual Information of Individual Fragments in Experiment 2

Fragment Type # Belonged to Category Categorization Task Mi

Main
0C C versus A (Main task) 1.0
1C C versus A (Main task) 1.0
2C C versus A (Main task) 1.0
3C C versus A (Main task) 1.0
4C C versus A (Main task) 1.0
5C C versus A (Main task) 1.0
6C C versus A (Main task) 1.0
7C C versus A (Main task) 1.0
8C C versus A (Main task) 1.0
9C C versus A (Main task) 1.0
Control
0oC C versus A (Main task) 0.07
C versus B (Control task) 0.8
1C C versus A (Main task) 0.08
C versus B (Control task) 0.71
2C C versus A (Main task)  0.09
C versus B (Control task) 0.7
3C C versus A (Main task) 0.19
C versus B (Control task) 0.95
4C C versus A (Main task) 0.2
C versus B (Control task) 0.71
5C C versus A (Main task) 0.2
C versus B (Control task) 0.71
6C C versus A (Main task) 0.2
C versus B (Control task) 0.78
7C C versus A (Main task)  0.21
C versus B (Control task) 0.86
8C C versus A (Main task) 0.22
C versus B (Control task) 0.71
9C C versus A (Main task)  0.23
C versus B (Control task) 0.74
IPControl
0oC C versus A (Main task)  0.05
1C C versus A (Main task)  0.05
2C C versus A (Main task)  0.05
3C C versus A (Main task)  0.05
4C C versus A (Main task)  0.06
5C C versus A (Main task) 0.06
6C C versus A (Main task)  0.06
7C C versus A (Main task) 0.06
8C C versus A (Main task) 0.06
9C C versus A (Main task)  0.06

nodak.edu/brady/downloads.html) and modified extensively by the
authors. The images were stored as 8-bit, 256 x 256 pixel grayscale
bitmaps.

Rationale for Using VP

The existing studies of informative fragments, although important, have
some significant limitations, all related to how informative fragments oper-
ate. By their very nature, informative fragments are parts of specific exem-
plar objects of a category, and not generic prototypes [S5, S6]. That is,
a given fragment containing an eye is not a general model of what an eye
“looks like,” but is extracted from a specific bitmap of a specific face.
This property of informative fragments has important computational advan-
tages [S5, S6]. But it also means that, for a familiar category, the object
exemplars from which the fragments are isolated computationally are not
the same as those from which the categories were first learned by the sub-
jects. Thus, fragments from familiar categories do not address the issue of
how categorization (i.e., assigning an object to a familiar category) is related
to category learning (i.e., acquiring a previously unfamiliar category). For
instance, do we learn informative fragments during category learning, i.e.,
is fragment learning a part of category learning? Do we learn fragments
only when it is necessary to do so (e.g., when the object of interest is par-
tially occluded) or incidentally as a part of category learning?
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Object categories that address the aforementioned issues must meet the
following four criteria: First, the categories must be new to the subject, so
that they need to be learned. Second, the new categories must be suffi-
ciently different from the familiar categories, so that subjects cannot learn
the new categories as variations of the familiar ones (e.g., SUVs as variants
of cars). Third, to ensure that behavioral and computational results can be
directly compared with each other, the fragments should be extracted
from the same images as those used by subjects for category learning.
This makes using highly familiar categories, such as faces or cars, undesir-
able because subjects are often exposed to uncontrolled instances of these
categories in everyday life. Finally, the categories should still capture regu-
larities inherent in natural object classes so as to approach conditions rep-
resentative of natural category learning. No currently available method of
creating object categories meets all of these criteria, whereas the VP algo-
rithm meets them all.

Experiments

Two independent experiments were carried out with the same set of three
classes. The two experiments differed in which category was distinguished
from which (A versus C or B versus C, see below). Each experiment con-
sisted of isolating the fragments, training the subjects, and subsequently
testing them, all with the same given set of objects.

Extracting Fragments for Experiment 1

For this experiment, the “Main” task was defined as distinguishing objects
of class A from objects of class B. Ten informative fragments supporting the
main task were isolated (“Main” fragments). Each main fragment was a small
20 x 20 pixel (0.53° x 0.53°) subimage of a class A object. We used small
fragments because larger fragments were found to contain smaller informa-
tive subfragments, even when the fragment on the whole was uninformative.
This is undesirable because subjects can potentially restrict their attention
just to the informative subpart of an uninformative fragment.

The fragments were selected, on the basis of their MI, out of many candi-
date fragments. All 20 x 20 pixel fragments on a dense grid (with step size of
7 pixels) were considered. This resulted in more than 500 candidate frag-
ments per image, or a total of about 115,000 candidate fragments for the
200 images. Ml of each fragment for the main task was calculated. The frag-
ment with the highest MI was selected, and the set of candidate fragments
was pruned on the basis of visual similarity (see below) to this selected
fragment. The process was repeated until a total of ten main fragments
(Figure 2A) were selected.

Visual similarity was evaluated with the correlation coefficient of pixel
values. To detect small overlaps between fragments, we also allowed the
correlated fragments to move with respect to one another. Candidate
fragments with visual similarity greater than 0.8 were considered too similar
to a selected fragment and were removed. This constraint reduced shape
redundancy across the selected fragments.

Main fragments are useful for performing the main task. Therefore, we
expect human subjects to preferentially use these fragments during this
task. For assessment of the degree of this preference, noninformative frag-
ments need to be selected as a basis for comparison.

A naive approach would be to select fragments as above but with minimal,
rather than maximal, MI. A disadvantage of this approach is that it tends to
select visually uninteresting fragments. For example, image patches that
are uniform or almost uniform in intensity have very low MI, so that several
of these would typically be selected by the naive approach. Such fragments
would indeed be uninformative, but for a trivial reason. So that the compar-
ison is fair, it is desirable to avoid selecting such fragments.

We introduce two principled methods of selecting interesting but uninfor-
mative fragments for comparison. First, we introduce a “Control” task,
which is to discriminate class A from class C. Ten fragments that are unin-
formative for the main task were selected, subject to the constraint that they
have high Ml for the control task (“Control” fragments). As before, these
were selected from a pool of candidate fragments—all 20 x 20 pixel frag-
ments of a class A object on a dense grid. First, all candidate fragments
with MI for the control task less than 0.7 were removed (recall that the Ml
can vary between 0 and 1 in our case). Next, fragments uninformative for
the main task were selected with the procedure described above, but frag-
ments with minimal (rather than maximal) Ml were chosen. The intuition be-
hind this method is that visually uninteresting fragments are expected to be
uninformative for any task. For example, the uniformly gray patches from the
background provide information for neither the main nor the control task.
the constraint of having high control task MI therefore ruled out such
patches. Indeed, the resulting control fragments (Figure 2C) have significant
visual content.
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We also isolated ten additional fragments by using an interest-point
detector (“IPControl” fragments). Interest-point detectors select areas of
an image that have significant visual content, such as corners or intersec-
tions [S7] or high entropy [S8]. Such detectors are heavily used in computer
vision (for a review, see [S9]). In our experiments, we used the popular Harris
interest-point detector [S10, S11]. First, we detect all interest points in an
image (typically, there are 300-600 per image). Because these points are
by definition visually interesting, we then simply proceed to select ten frag-
ments with low MI for the main task (as before, subject to the constraint of
being visually dissimilar to one another) (see Figure S2).

Compared to control fragments, IPControl fragments explore the set of
uninformative fragments more fully because the criterion for selection is
based more directly on local visual content. By contrast, control fragments
are constrained to be informative for an auxiliary task (the control task), and
this criterion will certainly miss those visually interesting fragments that
happen to be uninformative for the control task. On the other hand, the
IPControl fragments may be uninformative for a trivial reason. Interest-point
detector rules out the most trivial cases (such as patches of uniform inten-
sity) but may still pass other uninteresting content (for example, a patch
containing high-spatial-frequency random noise). Control fragments do
not run that risk because they are guaranteed to be informative for some
other task (the control task) and therefore are useful for categorization.

To summarize, we selected a total of 30 fragments for experiment 1. All of
these are subimages of the main class objects. Out of these fragments, ten
are informative for the main task, and 20 are uninformative.

Extracting Fragments for Experiment 2

The goal of our experiments was to determine whether human subjects
learn to use informative fragments in categorization. However, experiment
1 described above only involves a single categorization task (the main
task). To ensure the results are not specific to this particular set of cate-
gories, it is desirable to evaluate performance on a different set of cate-
gories. In experiment 2, we used the same three object classes (A, B, and
C) but redefined their roles. To this end, we designated the main task as
distinguishing objects of class C from objects of class A, and the control
task was designated as distinguishing class C from class B. We then
selected 30 additional fragments with the procedure described above, but
with the new class designations.

Training in the Categorization Task

Subjects

All psychophysical procedures used in this study were reviewed and
approved in advance by the University of Minnesota Institutional Review
Board. Ten healthy adult volunteers that had normal (or corrected-to-nor-
mal) vision participated in this study. All subjects provided informed
consent prior to the study and were compensated for their participation.
Six subjects (three females) participated in experiment 1, and four different
subjects (three females) participated in experiment 2.

Training Paradigm

Subjects in a given experiment were trained in the main task appropriate for
that experiment. Subjects received no training in the control task and were
not aware of existence of a third class (class C in experiment 1, class A in
experiment 2). The reason is that all fragments used in the experiments
were evaluated only with respect to Ml in the main task, whereas the control
task played only an auxiliary role.

During each training trial for experiment 1, two sample objects and a test
object (6.7° x 6.7° each) were presented simultaneously 9° (center-to-cen-
ter distance) apart. One of the sample objects was drawn randomly from
class A, and the other was drawn randomly from class B. The class member-
ship of the sample objects was indicated on the subject’s screen, and the
relative locations of the objects from the two classes were randomly
switched across trials. Depending on the trial, the test object was drawn
either from class A or from class B but was never the same object as either
of the sample objects in a given trial. By using a key press, the subject had to
classify the test object into class A or class B on the basis of the sample
objects. After the subject made his/her report, the correct classification
was shown on screen, so that the subject could to re-examine the three
objects in light of the feedback. The subject was allowed unlimited time
both to make the initial report and to review the subsequent feedback, so
as to approximate natural viewing conditions as closely as practicable.
The subject used another key press to proceed to the next trial. A given sub-
ject was considered trained if he or she performed significantly above 75%
accuracy (i.e., at p < 0.002 by binomial test) for at least two consecutive
blocks of 40 trials each. Subjects trained for a median of eight blocks (i.e.,
a total of 320 trials) before reaching this asymptotic level of performance.

Because there were 200 embryos in each class (see above), this means
that during the training phase, the subject saw each given embryo and
average of 1.6x.

The training procedure for experiment 2 was identical to that for experi-
ment 1, except that the class designations were different, as described
above.

Testing the Fragments

During the testing phase, the subjects performed the classification task on
the sole basis of a given fragment (Figure 3; see below). The subjects were
not told anything about the fragments, except that they were derived from
the type of objects they had seen during the training phase.

During the testing phase of experiment 1, we generated the test object by
compositing the fragment of interest on an object drawn randomly from
class A or class B (i.e., by graphically overlaying the given fragment over
the given background object). The composite object was shown to the
subject behind a rectangular translucent occluder with a hole, so that only
the fragment (0.53° x 0.53°) was visible through the hole, unhindered in
its proper position on the object, whereas the rest of the object appeared
as a faded “background” (see Figure 3). This design helped ensure that
the subjects saw the fragment in its proper context. This is more advanta-
geous in our context than presenting a given fragment by itself without
the context because it minimizes the possibility that subject may have to
use task-irrelevant semantic and spatial (e.g., configural) cues (e.g., left
eye) to help perform the task.

Two sample objects, one drawn from each class, were shown on either
side of the test object as during the training phase, although the class
membership was not indicated for any of the three objects. The sample
objects were provided to help ensure that (1) the task tested object catego-
rization and not fragment categorization and (2) task required only implicit
perceptual learning and not declarative (or explicit) association between
a fragment with a category.

We confirmed that the subject could not use the sample objects to do
a simple pixel-wise comparison between the fragment and the relevant
regions of the sample objects, since the subjects were unable to perform
the task with the same testing paradigm without first learning the correct
categories (see Figures 4D and 4E). For a demonstration of this effect, the
reader should choose a fragment of interest in Figure S1 and try categoriz-
ing it by comparing it to a whole object each from class A and class B.

Subjects had to classify, by using a key press, the test object into the
class represented by either sample object on the sole basis of the given
fragment of the test object. Subjects were told that the faded background
portion of the test object (i.e., the portion visible behind the translucent
occluder) was randomly drawn, so that they would not be able to perform
the task above chance levels with the background object. No feedback
was provided. To help ensure that the testing conditions reflected catego-
rization under natural conditions as closely as possible, we allowed subjects
free eye movements and unlimited time to make their responses. The aver-
age response time of the subjects was 5.30 s + 0.16 SEM (not shown) and
was indistinguishable from the corresponding response times during the
last two blocks of the training phase (ANOVA, unbalanced design; p > 0.05).

The trials for the various main and control fragments were randomly inter-
leaved. For each fragment, the performance of each subject was measured
over a total of 16 trials spread over four sessions of four trials each.

Testing for experiment 1 was carried out in two stages. During the first
stage (experiment 1a), the main and the control fragments were tested
with randomly interleaved trials for all six subjects in this experiment. During
the second stage (experiment 1b), the main and the IPControl fragments
were similarly tested for three of the six subjects.

The testing procedure for experiment 2 was identical to that for experi-
ment 1, with two exceptions. First, the class designations were different,
as described above. Second, main, control, and IPControl fragments were
all tested together with randomly interleaved trials.
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Visual Categorization: When
Categories Fall to Pieces

We cannot help but categorize the visual world into objects like cats and faces.
An intriguing new study shows that observers automatically discover
informative fragments of visual objects during category learning.

Quoc C. Vuong

We see the world in discrete categories
in order to recognize and interact
appropriately with objects in our
environment [1]. How do we learn
visual object categories? Our intuition
suggests that, through experience,
we acquire features found in members
of one category but not in those from
another category. For example, cats
have whiskers; human faces, on the
other hand, normally do not. There is
empirical support for this intuitive
view [2,3].

But a fundamental problem with this
intuition is image variability. Familiar
objects from the same category
can have an enormous range of
appearance; they are often occluded
by other objects; how they appear to
us can further be confounded by
viewing conditions such as variable
illumination; and so on [2]. These
factors converge to make it extremely
difficult to learn generic features that
are reliable for visual categorization.

In work published recently in
Current Biology, Hegdé et al. [4] offer
a compelling solution to this problem,
but one that highlights the need for
us to re-think the pieces that make
up objects and object categories.
Armed with a set of novel visual
categories [5] and a statistical means
to select features [6,7], these
authors have demonstrated that

observers automatically discover
fragments — literally, bits and pieces
of images — during category learning
that are very effective for visual
categorization. This provides a new
and important link between visual
category learning and visual
categorization.

In this new study [4], observers
classified a large number of unfamiliar
objects into two categories. The

objects were synthesized from a novel
virtual phylogenesis algorithm which
simulated the evolution of biological
forms [5], so that category members
captured natural variations of
categories we are more familiar with.
The examples in Figure 1 show that
this classification task is far from
trivial, even with whole objects (see
supplemental Figure S1 in the paper
for more examples).

Two main sets of image fragments
were extracted from trained objects
using the same statistical procedure.
Observers then classified all
fragments, just as they had done with
whole objects. This sounds like an
even more daunting task. Amazingly
though, observers were as accurate
with one set of fragments as they were

Figure 1. Example objects synthesized by virtual phylogenesis.
Observers were only trained on objects from two of the three categories A, B and C (from [4]).
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Informative fragments

Uninformative fragments

Figure 2. Examples of informative and uninformative fragments.

The informative ones distinguished between two trained categories — say categories A and B
from Figure 1 — whereas the uninformative ones distinguished between a trained (A) and

untrained category (C).

with whole objects — nearly 100%
correct! Surprisingly, the same
observers struggled to perform above
chance with the other set of
fragments.

Figure 2 shows the remarkable
lack of visual difference between
informative and uninformative
fragment sets. Clearly, observers do
not acquire just any fragment during
category learning. But what
distinguishes informative fragments
where performance is nearly at
ceiling, from uninformative ones
where performance is more or less at
chance?

The answer lies in how the fragments
are extracted from images. Following
recent computational advances,
Hegdé et al. [4] selected fragments
which maximized their ability to
distinguish categories, through
a powerful statistic called mutual
information [6,7]. This measure tells
us how certain we can be about the
presence of a category if a specific
fragment is present in the image. For
example, if a human eye is present in
the image, then there is a good
chance that a human face is also
present in that image.

The informative fragments used by
Hegdé et al. [4] distinguished between
two trained categories (say categories
A and B; see Figure 1). By comparison,
the uninformative fragments
distinguished between a trained and

untrained category (say categories A
and C). Observers never saw untrained
category members.

Thus, both informative and
uninformative fragments were of
comparable visual complexity and both
contained diagnostic information to
distinguish categories, but only the
informative ones were relevant for the
observers’ task. In fact, observers
could not classify informative
fragments prior to any training, which
underscores the importance of
category learning to discover the
right pieces for the task.

There are thousands of possible
fragments of an image, but only
a fraction of them will reliably indicate
that a particular category is present.
Feature selection based on mutual
information is a powerful framework to
extract those fragments [6,7]. These
are typically of intermediate complexity
[6], balancing how likely the fragments
will occur in an image and how
indicative they are of a particular
category.

For example, a fragment containing
the eyes and a bit of the nose probably
indicates that a face is present in the
image but it is very unlikely to find such
a large fragment in many different
images. Conversely, a much smaller
fragment containing just the hair line
(so it looks like an edge) is likely to
occur in many different images which
do contain faces but may accidentally

occur in images which do not contain
faces.

This framework is very successful
for familiar visual categories [7]. For
example, the mutual information of
familiar object fragments correlates
with neural measures like visual evoked
potentials [8] and haemodynamic brain
responses [9]. So there is exciting
new evidence that the brain may also
extract fragments of intermediate
complexity for everyday things.

One concern with using familiar
objects is whether observers learn
fragments out of necessity, as objects
are often occluded, or whether
fragment-based learning occurs
automatically as a matter of course.
Hegdé et al.’s [4] results clearly favour
the latter, as observers learn novel
whole objects. There was no need for
them to discover fragments during
training, but they did.

There is something to be said about
Hegdé et al.’s [4] virtual phylogenesis
algorithm for synthesizing objects.
Like biological organisms, their objects
evolve from a common ancestor.
Objects from the same category
inherit their common ancestor’s
shape characteristics but express
individual shape variations. Indeed,
this algorithm has a nice parallel to
earlier work with an artificial
taxonomy of ‘caminalcules’ used to
study how taxonomists classify the
evolutionary relationships between
species [10].

Virtual phylogenesis gives rise to
novel object categories with desirable
properties: for example, objects have
measurable natural within-class
variations similar to biological
organisms. It is also versatile: for
example, objects can be structured
into a hierarchy of categories, or other
evolutionary mechanisms (such as
sexual selection) can be incorporated
into the algorithm. Importantly, it is
a principled means to synthesize
a large number of naturalistic objects
without unknowingly pre-specifying
the informative fragments studied.

The algorithm diverges from
alternative methods of synthesizing
novel objects, such as combining
shape primitives [11,12] or clustering
shapes on the basis of similarity [13].
Given its versatility, virtual
phylogenesis is a significant addition
to the repertoire of techniques for
synthesizing objects that can be used
for natural vision, machine learning,
and even evolutionary taxonomy.
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Hegdé et al.’s [4] findings provide
strong support for a prominent
computational model of object
perception and categorization based
on informative image fragments [6,7].
They also support observers’ natural
tendency to pick up statistical
regularities in the visual input [14],
which can develop as early as nine
months [15]. Lastly, the results link
visual category learning with visual
categorization, in that informative
fragments play a key role for both
processes [4,6-9].

Category learning remains an
important issue in visual cognition.
There are ecological reasons for
acquiring pieces of visual categories
[1]; for example, to overcome very real
problems like occlusions and image
variability. The human visual system
has evolved to automatically acquire
informative fragments for visual
categorization. Let’s hope that we
will likewise pick up the pieces.
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Cellular Evolution: What’s in

a Mitochondrion?

Mitochondria and their relatives constitute a wide range of organelles, only
some of which function in aerobic respiration. Mitochondrial remnants from
different anaerobic lineages show a striking degree of functional convergence.

Christopher J. Howe

For many years, the view was widely
held that mitochondria originated
when a primitive eukaryotic cell
acquired through endosymbiosis

a prokaryote capable of oxidative
phosphorylation. Some of the
endosymbiont’s genes were lost, some
were transferred to the nucleus, and

a stable relationship was established
that has lasted very successfully for
well over a billion years. The fact that
anaerobic eukaryotic lineages exist
today — such as the gut-dwelling
pathogen Giardia — was attractively
consistent with this view of
mitochondrial origin. These anaerobic
eukaryotes appeared to lack
mitochondria and according to
molecular phylogenetic trees seemed
to have diverged from other eukaryotes
very early — presumably before the
acquisition of mitochondria. This group
became known as the Archezoa [1].
However, a discovery that would

ultimately be crucial to the demise of
the Archezoan concept had been
made back in 1973 with the description
of hydrogenosomes in anaerobic
trichomonads [2]. Hydrogenosomes
are now recognised as derived from
mitochondria. They produce hydrogen
and ATP and have been found in

a range of anaerobic or almost
anaerobic eukaryotes. Writing in
Current Biology, Stechmann et al. [3]
have now described another

example of a mitochondria derived
organelle that sheds light on their
evolutionary fate.

A second development leading to the
demise of the Archezoan concept was
the recognition that the anaerobic,
amitochondriate eukaryote Entamoeba
histolytica contains nuclear genes for
the mitochondrial proteins pyridine
nucleotide transhydrogenase and the
chaperonin cpn60 [4]. This discovery
indicated that this supposedly
amitochondriate organism had
possessed mitochondria in the past

and might even have retained

a remnant of the organelle. Although
the placement of Entamoeba among
the Archezoa was controversial, other
members of the Archezoa were soon
shown also to harbour genes for
proteins of mitochondrial origin and
remnant mitochondrial compartments
[5]- We now recognize that all
eukaryotes probably have
mitochondria, or their remnants, and
indeed it arguably was the acquisition
of the mitochondrion that marked

the birth of the eukaryotes [6].
Furthermore, the phylogenetic position
of Archezoa as early-diverging
eukaryotes is also questionable [7,8].

A Diversity of Mitochondrial Forms
Mitochondrial remnants are known

as hydrogenosomes or mitosomes,
depending on their function. In general,
organelles derived from mitochondria
can be ordered on a spectrum based
on their structure and function

(Figure 1). Classical mitochondria, with
their cristae as well as their electron
transfer chain and F{F, ATPase for
oxidative phosphorylation in aerobic
conditions, represent one end of the
spectrum. Close to these are the
mitochondria of some anaerobic
metazoa, such as those of parasitic
worms, which lack some components
of the electron transfer chain [9].
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