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Hegdé J. How reliable is the pattern adaptation technique? A mod-
eling study. J Neurophysiol 102: 2245–2252, 2009. First published
June 24, 2009; doi:10.1152/jn.00216.2009. Upon prolonged viewing
of a sinusoidal grating, the visual system is selectively desensitized to
the spatial frequency of the grating, while the sensitivity to other
spatial frequencies remains largely unaffected. This technique, known
as pattern adaptation, has been so central to the psychophysical study
of the mechanisms of spatial vision that it is sometimes referred to as
the “psychologist’s microelectrode.” While this approach implicitly
assumes that the adaptation behavior of the system is diagnostic of the
corresponding underlying neural mechanisms, this assumption has
never been explicitly tested. We tested this assumption using adapta-
tion bandwidth, or the range of spatial frequencies affected by adap-
tation, as a representative measure of adaptation. We constructed an
intentionally simple neuronal ensemble model of spatial frequency
processing and examined the extent to which the adaptation band-
width at the system level reflected the bandwidth at the neuronal level.
We find that the adaptation bandwidth could vary widely even when
all spatial frequency tuning parameters were held constant. Con-
versely, different spatial frequency tuning parameters were able to
elicit similar adaptation bandwidths from the neuronal ensemble.
Thus, the tuning properties of the underlying units did not reliably
reflect the adaptation bandwidth at the system level, and vice versa.
Furthermore, depending on the noisiness of adaptation at the neural
level, the same neuronal ensemble was able to produce selective or
nonselective adaptation at the system level, indicating that a lack of
selective adaptation at the system level cannot be taken to mean a lack of
tuned mechanisms at the neural level. Together, our results indicate that
pattern adaptation cannot be used to reliably estimate the tuning
properties of the underlying units, and imply, more generally, that
pattern adaptation is not a reliable tool for studying the neural
mechanisms of pattern analysis.

I N T R O D U C T I O N

In a pioneering psychophysical study, Blakemore and
Campbell (1969) showed that upon prolonged viewing of a
sinusoidal grating, the visual system is selectively desensitized,
or adapted, to the spatial frequency of the grating, while the
sensitivity to other spatial frequencies remains largely unaf-
fected. They interpreted this as evidence that the visual system
processes spatial frequency through mutually independent
pathways or “channels.”

Since that time, this technique, referred to variously as
selective adaptation, pattern adaptation, pattern-selective adap-
tation, or contrast adaptation, has become an influential and
established technique in psychophysical study of pattern anal-
ysis (for reviews, see Braddick et al. 1978; De Valois and De
Valois 1988; Graham 1989; Wandell 1995). Indeed the impor-
tance of this technique to psychophysics is such that it is

sometimes referred to as the “psychologist’s microelectrode”
(Frisby 1979; also see Leopold et al. 2001). Pattern adaptation
has been widely used, in one form or another, to study the
mechanisms that underlie the processing of spatial frequency
or other visual or nonvisual sensory features (for reviews, see
Graham 1989; Hollins and Bensmaïa 2007; Marks 1974; Wark
et al. 2007). A closely related technique, functional magnetic
resonance imaging adaptation (fMRIa), has also gained much
currency (see Grill-Spector and Malach 2001; but see Krekel-
berg et al. 2006).

The empirical fact that the visual system can and does adapt
to visual stimuli is indisputable. So is the experimental utility
of the adaptation process as a potentially powerful tool for
manipulating the underlying neural mechanisms. But what
precisely does adaptation at the system level reveal about the
properties of the underlying neural mechanisms? While the key
operating assumptions vary considerably from one study to the
next, it is fair to say that to a first approximation, the pattern-
adaptation technique implicitly assumes that the adaptation
parameters at the system level reflect the properties of the
underlying units (for overviews, see Graham 1989; Klein 1992;
Wandell 1995). That is, previous studies that have used the
pattern adaptation technique have generally used some mea-
sure of adaptation at the system level (typically adaptation
bandwidth) to estimate the corresponding property of underly-
ing neural substrates.

To be sure, many previous studies, including Blakemore and
Campbell (1969), have explicitly stated the underlying as-
sumptions of pattern adaptation and have interpreted the results
carefully with the applicable caveats in mind (see Graham
1989 for a comprehensive listing of the assumptions). But in
the present context, the problem with pattern adaptation is not
that its underlying assumptions have been unstated, but that
they have gone untested. No study to our knowledge has
systematically tested, much less directly established, how ad-
aptation at the neural level relates to the adaptation at the
system level, or vice versa (see Krekelberg et al. 2006). Of
course, this is not to say that adaptation itself has not been
studied at either level. Indeed much is known about the effects
of adaptation at both the system and neural levels (for over-
views, see Clifford et al. 2007; Graham 1989; Kohn 2007;
Krekelberg et al. 2006). But no previous study to our knowl-
edge has directly examined whether or to what extent the
adaptation parameters at the neural level can be reliably esti-
mated from the adaptation parameters at the system level.

On the one hand, the proposition of estimating the value of
an independent variable (e.g., adaptation bandwidth at the
neural level) given the observed value of a potentially multi-
variate dependent variable (i.e., adaptation bandwidth at the
system level) would seem prima facie suspect on purely math-
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ematical grounds alone. On the other hand, even if adaptation
bandwidth at the system level is not a precise estimator of the
underlying neural properties, it may nonetheless be useful as a
broad, albeit “leaky” measure of the neural properties. There-
fore it may be unwise to discount the usefulness of pattern
adaptation based on the aforementioned first principles alone.
Thus what is needed is an investigation of the relative strengths
and weaknesses of using adaptation at the system level as a
“marker” for the underlying neural properties.

We therefore investigated the relationship between the ad-
aptation behavior of the system and of the units using model-
ing. We studied whether and to what extent the adaptation
bandwidth at the system level reflects the adaptation bandwidth
at the neural level (and vice versa). We focused on adaptation
bandwidth because it is a reasonably representative measure of
adaptation and has been used in a large number of previous
studies and as such is well-suited as a test-case measure for
investigating the relationship between adaptation at the system
versus neural levels (see Graham 1989; also see following
text).

We constructed a simple, biologically plausible, neuronal
ensemble model (i.e., population model) that simulated key
features of human spatial frequency adaptation, and studied the
parameters that affected its adaptation behavior, specifically
the adaptation bandwidth. The model was intended to provide
a simple, easy-to-understand demonstration of this relationship
(or lack thereof) and not necessarily to provide a detailed
simulation of spatial frequency processing.

Our results indicate that adaptation behavior of the system is
a notably poor measure of the underlying neural mechanisms

of spatial frequency processing. Even more surprisingly, the
behavior of the system was often a misleading measure of the
underlying neural properties.

M E T H O D S

The construction and testing of the model is described in detail in
RESULTS (also see Fig. 1). Briefly, we constructed a simple, single-
layered, distributed neuronal ensemble that processed spatial fre-
quency. Except where stated otherwise, the ensemble consisted of 40
units. We determined the contrast sensitivity function (CSF) of the
ensemble before and after adaptation. For the adapted ensemble, we
also determined the adaptation bandwidth (see following text).

Determining the CSF of the ensemble

We calculated the response of each unit i to the test stimulus at
spatial frequency s and at contrast c

Ri,s,c � hi �s, c� (i)

where hi,s,c is the joint spatial frequency and contrast tuning curve of
the unit.

The variance of the response (i.e., noise) was arbitrarily taken to be

�i,s,c
2 � 1.5 Ri,s,c (ii)

as described previously by Lehky and Sejnowski (1990a, 1999).
We then calculated the response and response variance of each unit

of the ensemble at successively higher contrasts (c � 0) and calcu-
lated, for each contrast, the probability p that the aggregate response
(i.e., population response) of the ensemble exceeded the aggregate
response to the same stimulus at c � 0 (i.e., equiluminance) using

A B C D

E F G H

FIG. 1. The organization and operation of the ensemble. A: a typical unit. The spatial frequency tuning and the contrast gain function of the unit are shown.
B: the ensemble. The green line denotes the human contrast sensitivity function (CSF) (Mannos and Sakrison 1974) with which the responses of individual units
were scaled. C: the CSF of the ensemble before and after adaptation (green line and blue dots, respectively). Arrow denotes the adaptation stimulus. D: human
CSFs redrawn from previous reports. E: the adaptation of a single unit was implemented as an increase in its C50 (horizontal arrow), decrease in Rmax (vertical
arrow), or both (not shown), relative to the unadapted CGF (blue line). F: the tuning profile of the unit shown in A after an increase in its C50. G: CGFs of the
units in the adapted ensemble. Gray rectangle denotes half-maximal response; the intersection of the rectangle with the CGFs denotes the C50 values of all the
units in the ensemble. H: human CSF before and after adaptation (line and dots, respectively), after Blakemore and Campbell (1969).
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discriminability (d�) analysis (Lehky and Sejnowski 1990a, 1999).
Contrast threshold at a given test frequency s, Vs, was defined as the
contrast c at which the population response of the ensemble to the test
stimulus was larger than its response to the test stimulus at equilumi-
nance at 99% confidence level. The CSF of the ensemble was defined
as Vs

–1 (Blakemore and Campbell 1969; De Valois and De Valois
1988; Graham 1989).

Measuring the adaptation bandwidth of the
neuronal ensemble

Adaptation bandwidth � was measured using two independent
methods. In the �HA (bandwidth at half-amplitude) method, adapta-
tion bandwidth was measured as �HA � (fh – fl)/2, where fh and fl are
the higher and the lower spatial frequencies at half the maximal
observed contrast threshold elevation, respectively (De Valois and De
Valois 1988). In the �CF (bandwidth by curve fitting) method, the
contrast threshold elevation function V (i.e., the inverse of the CSF)
was fitted with the curve y � h exp[�0.5 (�2/�2)], where y is the
model estimate of V, h, and � are the height and SD of the curve, and
� is the difference between the spatial frequencies of the adaptation
stimulus and of the test stimulus. The � of the fitted curve was taken
as bandwidth �CF by this method (Snowden 1991). The �HA method
does not account for changes in the bandwidth due to multiplicative
scaling, whereas the �CF method does (Snowden 1991).

R E S U L T S

To investigate the relationship between the adaptation be-
havior of the system and of the units, we constructed a simple,
single-layered, distributed ensemble that processed spatial fre-
quency (Fig. 1) and studied the parameters that affected its
adaptation behavior. As in the relevant psychophysical studies
(Blakemore and Campbell 1969; Snowden 1991; also see De
Valois and De Valois 1988; Graham 1989), the adaptation
behavior of the system was assessed using its CSF, which
refers to the sensitivity of the system to the luminance contrast
of a given test stimulus as a function of its spatial frequency.

It is worth emphasizing at the outset that the neural model in
this study was not a detailed simulation intended to capture the
complexity of the underlying natural phenomenon in as much
realistic detail as possible. Rather our model belonged to a
different class of models sometimes referred to as “abstract
models” or “demonstrations,” the goal of which is to prove a
given principle (Churchland and Sejnowski 1992, p. 136–137;
Crick 1988, p. 114). There are many well-known instances of
such proof-of-principle models (see, e.g., Lehky and Sejnowski
1990a,b; Minsky and Papert 1987; for additional examples, see
Arbib 2002; Bishop 1995; Churchland and Sejnowski 1992;
Dayan and Abbott 2001). Our model aimed to demonstrate the
potential problems with pattern adaptation as simply and trans-
parently as possible, while remaining relatable to its neurobi-
ological context. That is, our model was intended to best
balance computational simplicity with biological plausibility
and not necessarily to simulate the details of human spatial
frequency processing. It is also worth noting that we did not
aim to determine whether spatial frequency channels (Blake-
more and Campbell 1969; Braddick et al. 1978; Klein 1992)
exist per se, but only to examine whether pattern adaptation
could be reliably used to determine if they do.

Each unit in the ensemble was tuned to both spatial fre-
quency and contrast (Fig. 1A). The ensemble consisted of 40
units, the preferred spatial frequencies of which were spaced

uniformly from 0 to 40 cycle/° (Fig. 1B). To help the model
simulate the human CSF (Ginsburg 1981; Wilson 1975), the
maximum response of each unit was scaled by a quantitative
description of the human CSF (Mannos and Sakrison 1974)
(denoted by the green line in Fig. 1B), but the contrast tuning
(i.e., the contrast gain function or CGF) of the units remained
identical across the ensemble (not shown). The units had no
properties other than those described in the preceding text. In
particular, the units had no cable properties, interconnections
or spatiotemporal dynamics. Note that although the model
makes no assumptions about the neural substrate of a model
unit, a unit can be thought of as an individual neuron, channel
(Blakemore and Campbell 1969; Braddick et al. 1978; Klein
1992), “analyzer” (Graham 1989), or some other entity, as
appropriate.

The CSF of the ensemble was determined by measuring, in
the presence of neuronal noise, the contrast threshold of the
ensemble at 20 different test frequencies using discriminability
(d�) analysis (see METHODS). CSF of the unadapted ensemble
(green line; Fig. 1C) was qualitatively similar to that of
unadapted humans (Fig. 1D), indicating that the model ade-
quately (although by no means exactly) simulated the human
CSF.

Adaptation of the ensemble was implemented as an increase
in the C50 or as a decrease in the Rmax of the CGF of a given
unit i (see Fig. 1, E and F) as a function of its response Ri to
the adaptation stimulus

�C50,i � f�Ri� (1A)

and

��Rmax,i � f�Ri� (1B)

where Rmax is the maximal response of the neuron, and C50 is
the contrast that elicits 50% of the maximal response (Albrecht
et al. 1984; Kohn and Movshon 2003; Movshon and Lennie
1979; Ohzawa et al. 1982; also see Kohn 2007). In the simplest
scenarios, these functions were implemented as the corre-
sponding linear relationships

�C50,i � m Ri (2A)

and

��Rmax,i � m Ri (2B)

where m is the arbitrary adaptation gain.
Figure 1G shows the CGFs of the units after the ensemble

was adapted to an 8 cycle/° stimulus (arrow) according to Eq.
2A, resulting in an increase in the C50 values of the cells in
linear proportion to their responses to the adaptation stimulus
(m � 2). All other parameters, including all spatial frequency
tuning parameters, remained unchanged (not shown). The CSF
of the adapted ensemble (blue dots; Fig. 1C) showed that the
contrast sensitivity was the lowest (i.e., contrast threshold
elevation was maximal) at the spatial frequency of the adap-
tation stimulus (or adaptation frequency; arrow in Fig. 1C) and
was progressively less affected farther away from this fre-
quency. This adaptation behavior was comparable to that
reported by Blakemore and Campbell (1969) (Fig. 1H).

Psychophysical studies typically measure the effects of pat-
tern adaptation as the bandwidth of contrast threshold elevation
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function because the threshold elevation is expected to be
selective to the extent that the underlying pathways are inde-
pendent (Braddick et al. 1978; Graham 1989; Klein 1992;
Westheimer 2001; Wandell 1995). The adaptation bandwidth
is generally taken as a measure of the bandwidth of the
underlying channel or analyzer (see Graham 1989; Klein 1992;
Wandell 1995). We therefore focused our modeling efforts on
studying how the adaptation bandwidth at the system level (�)
is affected by the spatial frequency tuning width (�) of indi-
vidual units.

By the conventional bandwidth-at-half-amplitude (�HA)
method of measuring adaptation bandwidth (see METHODS), the
adaptation bandwidth of the adapted CSF shown in Fig. 1C
was about 4 cycle/°, which is roughly comparable to those
from many previous psychophysical studies at this adaptation
frequency (also see following text). Qualitatively similar re-
sults (not shown) were obtained for other adaptation frequen-
cies, and when Rmax was varied instead of, or in addition to,
C50. Thus, the ensemble was able to adequately simulate the
essential features of human pattern adaptation.

Given this, we tested whether and to what extent the adap-
tation bandwidth of the ensemble depends on the spatial
frequency parameters of the underlying units, using three
different series of simulations. In the first series, we tested
whether the adaptation bandwidth of the ensemble can vary
independently of its spatial frequency parameters. To do this,
we systematically varied the value of the linear adaptation gain

m while keeping all spatial frequency parameters constant (see
Fig. 2A). The adaptation bandwidth of the ensemble measured
using the conventional bandwidth-at-half-amplitude method,
�HA, varied as a function of m (gray line; Fig. 2B). When
bandwidth was instead measured using the curve-fitting (�CF)
method (see METHODS), which is sensitive to changes in the
magnitude of contrast threshold elevation, the bandwidth also
varied as a function of m (black line, Fig. 2B), indicating that
this effect was not an artifact of the method we used for
measuring the bandwidth. If adaptation bandwidth were solely
a function of the spatial frequency parameters of the units, the
bandwidth would be expected to remain constant across the
various values of m, because the spatial frequency parameters
were held constant. We obtained similar results when C50
varied as a simple nonlinear function of the cell’s response to
the adaptation stimulus

�C50,i � Ri
m (3)

(Fig. 2C). Together, these results indicate that an ensemble
with the same spatial frequency parameters can produce dif-
ferent adaptation bandwidths. Thus the adaptation bandwidth
provided a poor estimate of the spatial frequency tuning width
of the underlying units or vice versa.

It should be noted that what the preceding simulation dem-
onstrates is not that the spatial frequency tuning of the units has
no effect on the adaptation bandwidth of the ensemble—for our

A

B C

FIG. 2. Variations in the adaptation bandwidth when spatial frequency parameters are unchanged. A: CSF (gray line, unadapted; black dots, adapted) of the
ensemble at m values of 1.0–4.0 in Eq. 2A. B and C: adaptation bandwidths (�HA, left y axes; �CF, right y axes) measured as a function of m in Eq. 2A (panel
B) or Eq. 3 (panel C).
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simulations do show that the former can affect the latter (see,
e.g., Fig. 1C)—but that other parameters such as C50 and Rmax

also can. On the other hand, while the adaptation bandwidth in
this particular simulation varied as the sole function of C50 or
Rmax, this does not mean that the adaptation bandwidth of the
system is solely dependent on these parameters either.

In the second series of simulations, we tested the converse
scenario, i.e., whether ensembles with different spatial fre-
quency parameters can produce similar adaptation bandwidths.
To do this, we constructed two different ensembles. In the first
ensemble, the spatial frequency tuning width � of each unit
was 1 cycle/°, and in the second ensemble, each unit had a �
of 4.0 cycle/°. The two ensembles were identical in all other
respects. Figure 3A shows the bandwidths of the two ensem-
bles for various values of adaptation gain m in Eq. 2A. The two
lines were not identical, indicating that spatial frequency tun-
ing of the individual units did affect the adaptation of the
ensemble in this case. Nonetheless, the two sets of bandwidths
were either largely similar or identical for many values of m, so
that the spatial frequency tuning width could not be unambig-
uously estimated from the corresponding adaptation band-
width. Similar results were obtained using the nonlinear adap-
tation gain in Eq. 3 (Fig. 3B) and when the Rmax values were
similarly changed instead (data not shown). Thus ensembles
with different spatial frequency parameters can produce simi-
lar, sometimes identical, adaptation bandwidths.

It is worth re-emphasizing that what this simulation demon-
strates is not that modulating the spatial frequency of the
underlying units has no effect on the adaptation of the ensem-
ble but only that there exist scenarios in which these modula-
tions have little substantial effect on the adaptation of the
ensemble. In the present case, the reason why this ensemble
produces similar bandwidths across a considerable range of
spatial frequencies is twofold (unpublished observations): first,
while the tuning width manipulations used in this simulation
substantially change the overlap between distant tuning curves
(i.e., tuning curves that peak at substantially different spatial
frequencies), they only modestly affect the overlap among
nearby units. Because adaptation bandwidth is a function of
(among other things) the overlap among units near the adap-
tation frequency, the tuning width manipulations have little
effect on adaptation bandwidth in this case. Second, the adap-
tation gain m (Eqs. 2A and 2B) was comparatively low so that
changes in the magnitude of Ri brought on by the changes in

the tuning width had a correspondingly smaller effect on the
overall adaptation of the ensemble. The point of this admittedly
selective manipulation of parameters is solely to demonstrate
that there exist scenarios where the adaptation bandwidth of the
network is not attributable to a unique tuning width of the
underlying units (see DISCUSSION).

In the third series of simulations, we tested whether our
ensemble can produce nonselective adaptation. To do this, we
systematically varied the correlation coefficient r between
�C50 and R in Eq. 2A, so that the degree of the adaptation of
the units was a noisy, or leaky, linear function of the respon-
siveness of the units to the adaptation stimulus. Because this
added noise was random across units, i.e., the �C50 value of a
given unit did not depend on its spatial frequency tuning
properties, the resulting CSF had random “dips” at spatial
frequencies corresponding to the neuron/s that happened to
have a comparatively high �C50 value (data not shown). These
dips, which occurred even in the unadapted ensemble, gave the
false impression that adaptation was occurring even when it
was not or was occurring at spatial frequencies other than the
adaptation frequency. Thus, in this ensemble, genuinely adap-
tation-related decreases in contrast sensitivity were confounded
by the noise-related decreases in contrast sensitivity. We there-
fore averaged out the noise-related effects using two ap-
proaches: 1) we determined the CSF as the average CSF over
1,000 independent rounds of adaptation, or 2) we increased the
number of units in the ensemble to 400 so that the CSF was
much less sensitive to the noisiness of individual neurons. Both
approaches yielded similar results (not shown). We present
here the results from the latter approach.

Figure 4 shows the CSFs of an ensemble with 400 units at
various values of r while all other parameters were held
constant (see legend for details). When �C50 and R were
perfectly correlated (r � 1.0), the adaptation was selective, as
expected (Fig. 4, far left). However, the adaptation of the same
ensemble was increasingly nonselective when the correlation
was lower, albeit still statistically significant (p �� 0.05; df �
398; Fig. 4, rightmost 3 panels). When the correlation was 0.7,
the ensemble still showed adaptation, but the adaptation was no
longer selective in any conventional sense (Graham 1989).
Varying the correlation between ��Rmax and R also yielded
similar results (not shown). Thus lack of selective adaptation at
the system level does not necessarily mean a lack of selective
units at the neural level.

A B

FIG. 3. Adaptation bandwidth of ensem-
bles with different spatial frequency param-
eters. The adaptation bandwidth (�CF) of 2
ensembles, in which the units had tuning
widths (�) of 1.0 and 4.0 cycle/°, respec-
tively, as a function of adaptation gain m in
Eq. 2A (panel A) or Eq. 3 (panel B).
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D I S C U S S I O N

Together, the results from the three series of simulations
demonstrate, for the first time, that the adaptation bandwidth of
the ensemble does not necessarily reflect the spatial frequency
tuning parameters of the underlying units, regardless of
whether a unit is an individual neuron, or a channel, or some
other entity. This is essentially because adaptation bandwidth
at the system level is confounded by parameters other than the
underlying tuning properties of interest. To the extent that such
confounds may apply to other system-level response measures
(see following text), our results imply, in a more general sense,
that pattern adaptation is not a reliable method for estimating
the properties of the underlying units. However, the implica-
tion of our study is not that pattern adaptation can serve no
useful purpose (see following text), but that its potential uses
are severely limited. Similarly, what our results warrant is a
thorough re-examination of the relevant previous psychophys-
ical results, and not a wholesale rejection of them.

The notion that pattern adaptation has potential problems is
not altogether surprising because the simple mathematical
considerations noted in INTRODUCTION indicate as much. The
significance of our study lies in demonstrating, using simple
and transparent methods, how potentially serious these prob-
lems are. Our results show not only that pattern adaptation can
be a poor estimator of the underlying neural properties but also
that it can readily produce seriously misleading estimates in
ways that are not clear from first principles alone. Thus what is
surprising about the problems with pattern adaptation is how
plausible and varied they are. Judging by the continued use of
this technique, the plausibility of these problems has not been
fully appreciated heretofore.

Factors that confound pattern adaptation

To the extent that the adaptation bandwidth of the system is
confounded by factors other than the spatial frequency param-
eters of the units, the problem of using the former to measure the
latter is underconstrained or “ill-posed.” This raises the question
of whether, in the future, this measurement procedure can be
constrained so that the adaptation behavior of the system does
reflect the underlying spatial frequency parameters. There are
substantial obstacles to doing this as illustrated by the specific
problem of estimating the spatial frequency tuning width � of
the units from adaptation bandwidth � of the system. First, as

our results demonstrate, � is a multivariate parameter affected
by confounding variables other than �. Therefore, the con-
founding variables and the nature of their relationship to �
need to be determined independently of pattern adaptation
(e.g., using neurophysiological methods), so that the confounds
can be quantitatively accounted for. It must be noted in this
regard that the confounds demonstrated by our minimalistic
model likely represents but a small subset of the actual con-
founds. Second, even after all the confounds are accounted for,
discerning the relationship between � and � is not straightfor-
ward, and involves at least two steps: step a, estimating the
adaptation-dependent changes in the CGF parameters � (so
that � �{C50, Rmax, . . .}) of individual units from a given value
of �. Because, as our models indicate, each � parameter can
affect � on its own, the relative weight of each � parameter
must be independently determined before � can be regressed
on �. This still leaves step b, which involves estimating � from
the observed changes in �. The neurophysiological relationship
between � and � is largely unknown, and the few available
studies (Albrecht et al. 1984; Van Wezel and Britten 2002)
indicate that � and � are largely unrelated. Thus carrying out
step b requires not only that the relationship between � and �
be studied for all relevant visual areas/regions but also that the
� and � be substantially correlated for all relevant stages of
visual processing. Third, note that although � values were
identical across the ensemble in our models, this is unlikely to
be the case in the visual system, so that the � values of
individual units (i.e., neurons, channels, etc) must be deter-
mined from the point estimate of � resulting from the preced-
ing exercise. Finally, note that although our results focus, as
many pattern adaptation studies do (see Graham 1989), on the
problems of estimating � from �, these concerns likely apply
in general to discerning any given neuronal parameter from any
given pattern adaptation parameter at the psychophysical level.
At the very least, it remains to be demonstrated that they do
not.

The preceding considerations mean that pattern adaptation
cannot be used to reliably estimate the spatial frequency tuning
properties of the underlying units. More generally, they help
illustrate the larger principle that system-level response mea-
sures cannot be used to estimate the corresponding neuronal
parameters, absent compelling evidence that the given system-
level measure is a univariate function of the intended neuronal
parameter.

FIG. 4. Adaptation bandwidth as a function of the “leakiness” of adaptation. The correlation r between Ri and �C50,i in Eq. 2A was systematically varied,
while all other parameters (400 units, each with � � 2.0 cycle/°; m � 2) were held constant. CSFs for representative values of r are shown.
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Possible future directions

An important issue not addressed by our study is whether it
is feasible to use the pattern-adaptation technique to address
the more general question of whether the underlying units are
tuned at all to begin with, e.g., whether channels exist. Two
lines of evidence indicate that this is also unfeasible. First, we
demonstrate that tuned units can produce nonselective adapta-
tion (Fig. 4), so that a lack of selective adaptation cannot be
taken to imply a lack of tuned units. But this leaves open a
second possibility that when selective adaptation does occur,
one can infer that the underlying units are tuned because we
were unable to obtain selective adaptation without tuned units
(unpublished observations). However, Sawamura et al. (2006;
also see Crowder et al. 2006) have demonstrated that in
macaque inferotemporal (IT) neurons, adaptation to one stim-
ulus can induce adaptation to a different stimulus. Such cross-
adaptation straightforwardly means that the presence of selec-
tive adaptation cannot be reliably taken to infer the existence of
tuned units (or channels) either.

To the extent our results indicate that adaptation at the
system level does not reliably reflect of the properties of the
underlying neurons, the use of adaptation in fMRIa experi-
ments (see Grill-Spector and Malach 2001; Grill-Spector 2006)
for this purpose needs to be re-evaluated. We emphasize,
however, that our results raise questions about interpreting
fMRIa results in neuronal terms but not about the technique per
se (qv. Crowder et al. 2006; Krekelberg et al. 2006; Sawamura
et al. 2006).

Also, while our models do not address the channel theory
(Blakemore and Campbell 1969; Braddick et al. 1978; Klein
1992) itself, they do indicate that the support for this theory
from pattern adaptation needs to be re-evaluated. To be sure,
the channel theory is supported by evidence from many other
established psychophysical techniques, including masking and
subthreshold summation (Braddick et al. 1978; De Valois and
De Valois 1988; Graham 1989; Wandell 1995). However, our
results raise the possibility that these techniques are also
subject to similar concerns as pattern adaptation. It is conceiv-
able that these potentially shared confounds can be resolved by
using these techniques independently of each other to estimate
a particular neural parameter of interest, e.g., the tuning width
of the spatial frequency channel with a peak at 8 cycle/°.
However, the tenability of this approach also remains to be
demonstrated, much like the tenability of the pattern adaptation
technique by itself.
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