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Abstract

Our perception of a visual scene changes rapidly in time, even when the scene itself does not. It is increasingly clear that understanding how the

visual percept changes in time is crucial to understanding how we see. We are still far from fully understanding the temporal changes in the visual

percept and the neural mechanisms that underlie it. But recently, many disparate lines of evidence are beginning to converge to produce a complex

but fuzzy picture of visual temporal dynamics. It is clear, largely from psychophysical studies in humans, that one can get the ‘gist’ of complex

visual scenes within about 150 ms after the stimulus onset, even when the stimulus itself is presented as briefly as 10 ms or so. It generally takes

longer processing, if not longer stimulus presentation, to identify individual objects. It may take even longer for a fuller semantic understanding, or

awareness, of the scene to emerge and be encoded in short-term memory. Microelectrode recording studies in monkeys, along with neuroimaging

studies mostly in humans, have elucidated many important temporal dynamic phenomena at the level of individual neurons and neuronal

populations. Many of the temporal changes at the perceptual and the neural levels can be captured by the multifaceted and somewhat ambiguous

concept of coarse-to-fine processing, although it is clear that not all temporal changes can be characterized this way. A more comprehensive, albeit

unproven, alternative framework for understanding visual temporal dynamics is to view it as a sequential, Bayesian decision-making process. At

each step, the visual system infers the likely nature visual scene by jointly evaluating the available processed image information and prior

knowledge about the scene, including prior inferences. Whether the processing proceeds in a coarse-to-fine fashion depends largely on whether the

underlying computations are hierarchical or not. Characterizing these inferential steps from the computational, perceptual and neural standpoints

will be a key part of future work in this emerging field.
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1. Introduction: the dynamic nature of visual

perception

1.1. A simple demonstration

We all know that visual perception is not instantaneous—it

takes finite time. Most of us are also aware, at least implicitly, of

another temporal complexity of visual perception. It is that our

perception of a given image changes depending on how long we

view it, even when the stimulus itself remains unchanged.

Usually, one can only get a gist of a visual scene from a fleeting

glance. Perceiving the finer details of the visual scene generally

requires longer scrutiny. There tends to be more to the view than

J. Hegdé / Progress in Neurobiology 84 (2008) 405–439406
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meets the eye at first; we all remember having had to do a

‘double-take’ of one visual scene or another.

One can easily get some basic intuitions about the temporal

dynamics of visual perception, and the problems of rigorously

studying these phenomena, using an informal experiment. The

key is to pick a picture of an unfamiliar scene, view it as briefly

as possible, look away, and describe the scene with as much

rigor and detail as possible. Repeat the procedure until you feel

you have seen all there is to see in the picture. You can use Fig. 1

for this purpose. Is there an animal in this picture? If so, what

kind? How many looks did it take you to determine the answer

to either question? How would you go about characterizing the

temporal changes (or perhaps the lack thereof) in your percept?

In exercises such as these, subjects typically report that their

understanding of the scene gets more detailed or specific over

successive viewings. In case of Fig. 1, for instance, one initially

tends to recognize broad categories of objects, such as ‘‘brush’’,

‘‘animal’’, bird’’. But more specific object identification, such

as ‘‘fox’’, ‘‘kitten’’, ‘‘Blue Jay’’, or ‘‘Thuja plant’’ takes longer.

One’s certainty about the various aspects of the scene also tends

to improve over multiple viewings.

Recently, rigorous laboratory studies of such visual temporal

dynamic phenomena have begun to yield some answers about

how our visual percept changes in time, and what neuronal

mechanisms may underlie these changes. This article will

present an overview of these findings.

1.2. Scope and organization of the review

The aim of this review is to provide a broad outline, and not

an exhaustive account, of visual temporal dynamics. This will

entail an admittedly subjective selection of topics relevant to

understanding this field. In the interest of cogency, we will also

sidestep many important ancillary topics, including issues such

as how the visual awareness evolves over time, a process often

referred to as microgenesis (for reviews, see Koch and Crick,

2004; Öğmen and Breitmeyer, 2006).

As alluded to above, most of the psychophysical studies on

this topic have been carried out in humans, and almost all of the

relevant single-unit studies have been carried out in monkeys.

Whole brain imaging studies of visual temporal dynamics have

been mostly carried out in humans. We will treat these three sets

of studies largely separately (in Sections 2–4, respectively),

both because each body of research stands on its own, and

because it is often unclear how they relate to each other.

Most studies of temporal changes in the visual percept focus

on shape perception, i.e., recognition of objects and scenes. The

temporal dynamics of space perception and visually guided

action have been studied less, presumably because these

processes must take place in ‘real time’, and are believed to be

mediated by a different neural pathway than that for object

recognition (see Figs. 3 and 6). While this presumption itself is

debatable (see Section 3.9), the corresponding bias in the

literature is naturally reflected in this review.

1.2.1. Trying to make sense of temporal dynamics:

frustrations and rewards

At present, we seem to know just enough about the various

temporal dynamic phenomena to discern that there is no single

unifying explanation yet for all of them, but not enough to know

what an eventual explanation will look like. Indeed, there is no

particular reason to expect that there is a single explanation for

all the disparate temporal dynamic phenomena, any more than

there is to expect that there is one for vision at large. Thus, the

field of visual temporal dynamics currently amounts to a

bewildering collection of results that are loosely interconnected

as best, and this review will inevitably reflect this. However,

while this uncertainty may make this review a challenging

reading, it is also precisely what makes this field so exciting.

A recurring theme in visual temporal dynamic literature is

that visual processing progresses in a global-to-local, or coarse-

to-fine, fashion. While the scientific usefulness of this concept

is unclear at best (see Section 6), it is nonetheless serves as a

useful point of departure, whereby temporal dynamic

phenomena can be understood as variations of, or deviations

from, this theme.

1.2.2. Temporal dynamics as serial decision-making

As noted in Abstract, a more promising approach to

understanding temporal dynamics is to view it as reflecting a

series of probabilistic, Bayesian inferences about the nature of

the visual scene and about possible courses of action. Although

the underlying concepts are mathematically rigorous (which is

one of the strengths of this framework), they can be intuitively

understood (for more rigorous accounts, see Kersten et al.,

2004; Doya et al., 2006; Ma et al., 2006; Yuille and Kersten,

2006). Briefly, this framework posits that the visual system

infers the likely nature of the image and optimal course of

action by jointly evaluating available information about the

image and prior information about the visual world in a

probabilistic fashion (using the Bayes’ law of conditional

probability). Thus, in this framework, vision is an inferential

process, and visual temporal dynamics is simply the temporal

dynamics of the inferential process—the visual system tests the

Fig. 1. The degree of scene understanding varies with the duration of viewing.

Is there an animal in the picture? What kind of an animal is it? How many other

animals can you identify in the picture? Which aspects of the scene did you

recognize instantly? Which items took some time to see?

J. Hegdé / Progress in Neurobiology 84 (2008) 405–439 407
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various hypotheses as they arise and as information becomes

available against which to test them.

The effectiveness of the Bayesian framework in explaining

temporal dynamic phenomena remains largely untested and

unproven, although there have been some promising starts (see

Ma et al., 2006, and the references therein). In the realm of

vision in general, however, the effectiveness of the framework

has been well tested and well established (see Kersten et al.,

2004; Doya et al., 2006).

Note that this framework subsumes and extends the coarse-

to-fine processing framework: to the extent that the underlying

computations are hierarchical (e.g., the object of interest in

Fig. 1 is an animal, a fox, and a particular fox named Biel), the

processing may indeed proceed in a coarse-to-fine manner. To

the extent that the underlying computations are non-

hierarchical, such as those involving parameter estimation

(e.g., judging the time of day in the scene shown in Fig. 1), the

inferences may not proceed in that manner. Thus, under-

standing the temporal dynamics of a given visual phenomenon

becomes a matter of understanding the nature of the

underlying decisions, how the information that supports these

decisions accumulates (or just changes) over time, and how

the brain arrives at a decision given the information available

at the time.

Of course, when it comes to temporal dynamics, the above

Bayesian framework is only a pedagogical tool as yet, since the

relevant inferential steps have been elucidated for none of

temporal dynamic phenomena. We will examine these issues in

greater detail in Section 6. But in the meantime, it will be

helpful to the reader to use this framework to help

conceptualize various results described below.

1.3. Some complexities of natural vision

Under natural conditions, the retinal image is often

extraordinarily complex, and tends to change in complex ways

over time. Among other things, this is because the eyes, the

head, the observer, the objects in the visual scene, and the

source/s of illumination all can move relative to each other. In

addition to these stimulus-driven, or ‘bottom–up’ factors, many

cognitive, ‘top–down’ factors also tend to change dynamically

over time. Quite understandably, most temporal dynamic

studies so far have avoided these complexities, instead using

simple, typically static, stimuli viewed without eye movements

(i.e., with the eyes fixating a specified target).

Moreover, most temporal dynamic studies focus on the

changes that occur over a relatively brief time period—

typically a few hundred milliseconds. The choice of this time

range is not only practical, but also happens to be

neurobiologically meaningful. Under natural viewing condi-

tions, humans move their eyes once every 300 ms on average

(mode, 230 ms; range, <50 ms to >1000 ms; Henderson and

Hollingworth, 1998). These parameters are largely similar for

monkeys (Wilson and Goldman-Rakic, 1994). In between a pair

of eye movements, i.e., during each fixation, the retinal image is

largely stable (but not absolutely so, see Henderson and

Hollingworth, 1998).

Thus, visual processing in laboratory experiments using a

stimulus duration of a few hundred milliseconds is roughly

comparable to the visual processing during a single fixation

episode during natural viewing (see, e.g., DiCarlo and

Maunsell, 2000). However, whether and to what extent these

short-term changes in visual processing are related to the

adaptive changes that occur over much longer periods of time

such as hours, days and even years is unclear (see Fahle and

Poggio, 2002; Hochstein and Ahissar, 2002; Sharpee et al.,

2006). We will therefore sidestep this larger question (see Box

4), and focus more narrowly on the short-term changes.

2. Characterizing the temporal changes at the

perceptual level

Although the dynamic nature of visual perception seems

obvious with the benefit of hindsight, it has historically received

scant attention. Gestalt psychologists of the early 20th Century

seem to have thought that, as Navon (1977) put it, the visual

system is a ‘‘perfectly elastic device that can swallow and digest

all visual information at once, no matter how rich it is’’ (p. 353).

Many other contemporary psychologists did, however, note that

the more one looks at an image, the more one gets from it (e.g.,

Helson and Fehrer, 1932; Bridgen, 1933). But much of what we

know substantively about the temporal dynamics of visual

perception has been learned in the last three decades or so.

2.1. Insights from early psychophysical studies: seeing the

forest before trees

One of the earliest studies to clearly illustrate the temporal

changes in visual perception was that by Navon (1977). He

Fig. 2. (a) Stimuli used by Navon (1977). (b) Stimuli used by Reynolds (1981).

See text for details.
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explored whether the global or the local structure of a visual

stimulus has greater precedence in visual perception. One of his

stimuli was a large H character built using many smaller H

characters as building blocks. He similarly created a large H

with smaller S’s, and large S’s with smaller H’s or S’s (Fig. 2a).

He found that subjects perceived a given larger letter much

more readily than its smaller building blocks. The identity of

the smaller letters had no effect on the recognition of the larger

ones. On the other hand, the identity of the large letter did

substantially affect the recognition of the smaller letter. For

instance, smaller letter H was easier to recognize if it was part

of a large H rather than of a large S. In a related experiment,

Navon asked subjects to report whether similar composite

stimuli created using geometric shapes (e.g., triangles and

squares) presented in pairs were the same or different. The

subjects performed much better when the global shapes were

the same, regardless of the local shapes, than when the local

shapes were.

These findings indicate that global object features take

precedence over local features in visual processing (‘forest

before trees’). The reasons why are not entirely clear. It may be

that this phenomenon simply reflects global-to-local proces-

sing, whereby the visual system processes the global image

feature before the local ones. Or it may be that it takes longer to

deploy attention (or, equivalently, to make saccades) to local

features, or because zooming attention vs. shifting it have

different costs and benefits (Stoffer, 1993; Torralba et al.,

2006). It is also worth noting that whether ‘global’ or ‘local’

shape takes precedence depends on the relative size of the

relevant image elements. For instance, it is easy to imagine that

as the overall retinal size of the stimulus increases, it becomes

easier to recognize the local shapes than the global shape.

Reynolds (1981) used a somewhat more complex stimulus

that consisted of three pacmen that induced the percept of the

classic Kanizsa illusory triangle. Depending on the condition,

the pacmen were such that the resulting illusory triangle

appeared straight or curved (Fig. 2b). The pacmen were each

presented for 50 ms. After a stimulus onset asynchrony (SOA,

or the delay relative to the onset of the pacmen) that varied

systematically from 50 to 150 ms, a mask was presented so as to

essentially prevent further processing of the pacmen stimulus

(for more on masking, see Section 2.4).

Reynolds found that if the mask immediately followed the

pacmen (i.e., had an SOA of 50 ms), a majority of the subjects

saw the pacmen, but failed to see the triangle. A few subjects

that did report seeing a triangle often mistook a straight triangle

for a curved one, or vice versa. When the mask had an SOA of

100–125 ms, all observers reported seeing a triangle (and, of

course, the pacmen), and were generally more accurate about

the curvature of the triangle.

These and additional experiments with more complex stimuli

illustrated two related characteristics of visual temporal

dynamics: first, even when the stimulus does not change, its

perception grows more elaborate over time. Second, the subjects’

inferences about the scene also grow more accurate over time.

With striking prescience, Reynolds cast his results in terms of a

sequential inference model, in which the visual system tests

hypotheses of increasing complexity against accumulating

image information. With longer processing time, the amount

of the processed image information increases, against which

progressively more complex hypotheses about the nature of the

image can be tested, and conclusions can be drawn with greater

certainty. This explains why the subjects’ percepts got both more

elaborate and more accurate over time.

Fig. 3. The two major visual pathways in the human brain. The cerebral hemisphere is digitally inflated to reveal the entire cortical surface, including the sulci (folds),

shown here are dark regions. The blue regions are the gyri (cortical bulges). Subcortical visual structures, including the eyes and the LGN, are not shown. (a) Lateral

view of the inflated hemisphere. (b) Ventro-medial view. In either panel, the translucent red arrow lies in the sagittal plane and points in the due ventral direction. The

black arrows denote the main two pathways though which feed-forward visual information travels from the occipital lobe to the frontal lobe. Feed-forward visual

processing refers to computations where outputs from a given stage of processing travel to next stage/s of processing, progressively further away from the eyes. In the

ventral (or temporal, ‘what?’) pathway, which is believed to mediate shape perception, the feed-forward information travels from the occipital lobe to the frontal lobe

via the temporal lobe. In the dorsal (or parietal, ‘where?’) pathway, which is believed to mediate space perception, the feed-forward information travels from the

occipital lobe to the frontal lobe via the parietal lobe. Feedback and lateral connections, which collectively mediate recurrent processing, are not shown for either

pathway. Approximate locations of some key brain regions referred to in the text are denoted in yellow. Visual cortical areas other than V1 (visual area V1 or striate

cortex) are collectively known as the extrastriate visual areas (not labeled). Prefrontal cortex (or PFC; not labeled) is the anterior part of the frontal lobe. The

functional anatomy of human visual pathways is similar to that of the macaque brain (Fig. 6). The dorsal and ventral pathways may be much less functionally distinct

than generally thought (see Section 3.9; also see Merigan and Maunsell, 1993). (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of the article.)
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Thus, Reynolds’ model captured the qualitative essence of

the more quantitative present-day framework of sequential

inference, and illustrated the usefulness of such models as an

explanatory and research tool. Unfortunately, as will be

apparent from the remainder this review, few subsequent

studies have utilized this framework (also see Box 4).

The aforementioned studies also serve to highlight three

subtler, but larger, issues in the field of visual temporal

dynamics. The first is the fact that the processing duration

(usually specified as SOA) tends to be operationally far more

important than the stimulus duration. In general, the visual

stimulus need only be presented briefly (for a few tens of

milliseconds or less) as long as the system is allowed more time

to process the retinal input before the processing is interrupted,

e.g., by a mask (Di Lollo and Wilson, 1978; Coltheart, 1980).

For this reason, temporal dynamic studies typically explore the

temporal changes in the percept as a function of the processing

duration, while holding the stimulus duration constant.

The second issue has to do with the distinction between how

the reported percept varies as a function of the processing

duration vs. how the percept itself varies over the course of a

given processing duration. For instance, in the pacmen

experiment outlined above, subjects report perceiving only

the pacmen but not the illusory triangle for processing durations

of up to 100 ms, but report perceiving both for processing

durations of 150 ms or longer. Does this mean that for

processing durations of�150 ms, the subjects first perceive just

the pacmen and then both the pacmen and the illusory triangle?

In other words, does change in the percept as a function of the

processing duration also describe the change in the percept as a

function of time? The answer, which hinges on whether the

temporal changes in the visual percept follows the same

deterministic path, and whether intermediate steps in proces-

sing are consciously perceived, is largely unknown. None-

theless, these questions serve to highlight the potential

distinction between the two scenarios (Efron, 1967; Koch

and Crick, 2004).

The third issue is that the temporal changes in the visual

percept are intimately associated with many other behavioral

parameters, including task performance, accuracy, and the

certainty in the percept. These parameters may also change over

time even when the percept itself does not. Out of practical

necessity, most studies typically measure only one of these

outcomes at a time, but this necessarily underemphasizes the

complexities (e.g., non-linearities) in visual perception. Also,

since the likelihood of a given behavioral outcome is rarely the

same from one subject to the next or one session to the next, it

makes sense to express the metric in explicitly probabilistic

terms, as implied by the aforementioned probabilistic frame-

work. But few temporal dynamic studies currently do this. This

failure to explicitly account for the multivariate, probabilistic

nature of the response metrics is among the reasons why

although our current understanding of visual temporal

dynamics has considerable explanatory power, it has little

predictive power.

Altogether, the importance of the above early studies is that

they brought into sharp relief many of the key features of visual

temporal dynamics. Subsequent research has focused largely on

characterizing the various temporal dynamic phenomena.

Collectively, these studies appear to support the notion that,

to a first approximation, visual perception proceeds in a coarse-

to-fine manner: Vision at a glance, or visual perception on an

ultra-rapid time scale, operates differently than visual percep-

tion on a longer time scale, or vision with scrutiny (Hochstein

and Ahissar, 2002; also see Section 2.6). While this is a useful

pedagogical distinction for our purposes, it is important to

remember that it may or may not reflect two distinct types of

underlying temporal dynamic phenomena.

2.2. Vision at a glance: ultra-rapid categorization

In a landmark study, Thorpe et al. (1996) measured brain

activity using electroencephalogram (EEG) while human

subjects reported whether or not a given photograph of a

novel natural scene, presented for just 20 ms, contained an

animal (see Section 4.2 for additional details). EEG signals,

often referred to as event-related potentials (ERPs), specific to

correct categorization of images emerged within about 150 ms

after the stimulus onset, indicating that human beings can

rapidly perceive the ‘gist’ of a complex natural scene at a

glance. Subjects took a few hundred milliseconds longer to

press a button to indicate their response (reaction time range,

382–567 ms), presumably reflecting the additional time it takes

to plan and execute the motor response. Measuring ERPs

bypassed this motor delay, establishing that complex natural

scenes can be processed on an ultra-rapid time scale. Even more

importantly, this result suggests that the gist of a complex image

can be perceived solely through feed-forward processing of the

visual signal, since a processing duration of 150 ms would

leave little time for feedback processing (Thorpe et al., 1996, p.

522). Many subsequent studies have essentially confirmed this

finding (Johnson and Olshausen, 2003, 2005a; Fabre-Thorpe,

2003; Rousselet et al., 2004).

The notion that ultra-rapid visual processing is not

dependent on feedback signals is supported by additional

studies which indicate that such processing is unaffected by

top–down influences such as attention and prior knowledge,

which are mediated by feedback signals. It is also known that

the ultra-rapid scene categorization can take place pre-

attentively, i.e., without attentional deployment. Li et al.

(2002) have shown that subjects can rapidly detect whether or

not a given natural scene, presented at an eccentricity of about

68, contained an animal while simultaneously performing an

attentionally demanding letter discrimination task foveally

(also see Rousselet et al., 2002). Moreover, training in, or

expertise with, the task typically does not speed up the

performance in ultra-rapid perceptual tasks. When the subjects

received extensive 3-week training in the task and were tested

with novel stimuli, they were no faster at the task, using familiar

or novel stimuli (Fabre-Thorpe et al., 2001).

How much of the visual scene do we perceive at a glance,

i.e., within the first 150 ms or so of processing time? The

emerging consensus seems to be that one can perform two types

of visual tasks at a glance: (i) detecting the presence of an
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object, such as determining whether a given natural image

contains an object, and (ii) categorizing it at a basic level,

classifying the given object as a face, a bird or a house (Grill-

Spector and Kanwisher, 2005; also see Fabre-Thorpe, 2003;

Johnson and Olshausen, 2003, 2005a; Rousselet et al., 2004).

Note that the definition of a ‘basic level’ category is somewhat

arbitrary and operational—it typically refers to the predeter-

mined category that non-expert subjects tend to classify a given

object into upon a glance (also see Section 2.3). Importantly,

detection and categorization take about the same length of time

(Fig. 4; also see Section 2.3), so that as soon as one detects the

presence of an object, one knows what it is (Grill-Spector and

Kanwisher, 2005). It may even be that the two tasks are

fundamentally the same, although we can semantically

distinguish between them.

Human performance in ultra-rapid categorization tasks is

remarkably robust across a relatively large range of stimulus

parameters and viewing conditions. Subjects can still perform

the task at more than 60% when the stimuli are centered at an

eccentricity of about 708, and regardless of whether the

stimulus is upright or inverted (Thorpe et al., 2001; Rousselet

et al., 2003). Processing two natural images is as fast as

processing one (Rousselet et al., 2002, 2004). Subjects can

perform the task well above chance levels at about 10–12% of

initial contrast (Macé et al., 2005b). And, as noted above,

subjects can perform the categorization task pre-attentively,

i.e., without deploying attention.

Fabre-Thorpe et al. (1998) have shown that the performance

of monkeys in this task is essentially similar to that of humans.

Indeed, the reaction times, i.e., the time between the stimulus

onset and the response, of monkeys were shorter by 100–

180 ms in the detection task compared to the fastest human

subject for the same stimuli and task (also see Delorme et al.,

2000; Fabre-Thorpe, 2003; Macé et al., 2005a). This is

presumably because monkeys have smaller heads, so that the

neuronal signal has shorter physical distances to travel.

How much of the visual scene seen at a glance are we aware

of? VanRullen and Koch (2003) showed human subjects

common indoor or outdoor visual scenes, each containing 10

distinct visual objects. Each scene was presented for 250 ms,

slightly longer than the typical processing duration in the

aforementioned ultra-rapid categorization experiments. After

viewing each given scene, subjects were able to recall on their

own the names of 2.5 objects on average. Subjects were then

forced to guess from a list of object names, and the subjects

were able to pick out an additional 2.5 objects. Interestingly, the

objects that the subjects consistently failed to recall showed a

negative priming effect in later picture-word matching task,

indicating that objects stayed in memory even when they were

not consciously recognized or recalled.

Liu and Jiang (2005) revisited the above experiment by

requiring the subjects to visually match, rather than verbally

name, the objects in a visual scene. They found that subjects

recalled fewer than one object per scene at glance, but were able

to recall more objects after viewing the scene for several

seconds. Liu and Jiang suggest that the reasons for the

discrepancy between the two studies are that verbal memory

and guessing contribute substantially to how much we are able

to recall from a glimpse, and that the contribution of these

factors becomes less prominent with longer viewing durations.

The delay between stimulus presentation and testing is also

important, since we rapidly forget what we see (Potter et al.,

2002). Thus, how much we remember from what we see at

glance depends on how the recall is measured.

2.3. Vision with scrutiny: elaboration of the visual percept

While one can categorize visual scenes rather rapidly, it is

also clear that finer details of image, such as the identity of the

object of interest, take longer to emerge (Johnson and

Olshausen, 2003). Grill-Spector and Kanwisher (2005)

measured the time it takes to perform different types of object

recognition tasks by measuring the performance in a given task

as a function of the stimulus duration. Subjects were presented

with novel, natural scenes for 17, 33, 50, 68, or 167 ms,

followed immediately by a mask. In the object detection task,

the subjects had to report whether the given image contained an

object, regardless of what the object was. In the object

categorization task, subjects classified the object at a ‘basic’

level, i.e., assigned the object to a ‘basic’, pre-specified

category, such as a car, animal or flower. In the third, within-

category identification task, subjects were asked to assign the

object to a more specialized, also pre-specified, category such

as a Volkswagen Beetle or German shepherd, and so forth.

The authors measured the performance as a function of the

stimulus duration (same as the processing duration in this case).

The rationale was that if a given task takes less time to

complete, the performance in that task will be higher than the

performance in a task that takes longer to complete. As

mentioned above, the performance was indistinguishable for

detection vs. categorization tasks (Fig. 4), indicating that the

Fig. 4. The performance of human subjects in three different object recognition

tasks using natural images. Stimuli were presented for various durations as

indicated, and masked immediately thereafter. The performance of the subjects

was measured as a function of the stimulus duration in each of the three tasks. In

the detection task, subjects had to decide whether or not a given image contained

an object. In the categorization task, subjects had to categorize the object in the

picture at a ‘basic level’ (e.g., animal, house, flower). The basic categories were

pre-specified, i.e., the subject was given the categories to classify the objects

into. In the identification task, subjects had to assign the object to a subordinate-

level category (e.g., German shepherd), also pre-specified. Error bars indicate

standard errors of the mean. Figure redrawn from Grill-Spector and Kanwisher

(2005) with permission.
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two tasks require the same amount of processing time. For

stimulus durations of�68 ms, the performance in the detection/

categorization tasks was always better than the performance in

the identification task. For a stimulus duration of 68 ms, the

performance was at near-chance levels for the identification

task, but was much better for detection/categorization tasks,

indicating that 68 ms of processing time was largely enough for

the latter tasks, but not for the former one. Thus, detection/

categorization of the object occurs before the identification. For

a stimulus duration of 167 ms, the performance in all tasks

including identification was close to 100% correct.

Note that the hierarchical nature of the above three tasks

naturally captures the hierarchical nature of the visual world

and how we perceive it (Mervis and Rosch, 1981). In other

words, in perceiving a given visual object in increasingly

greater detail, we naturally place it in categories of increasing

specificity, such as an object, an animal, a dog, a German

Shepherd, a particular German Shepherd named Max, and so

forth. The Bayesian framework, then, would explain the

observed temporal dynamics of this categorization as a function

of the hierarchical nature of the underlying categorical

hypotheses and the time it takes for the visual system to

‘develop’ the necessary information and test the various

hypotheses against this information.

Is object identification always slower than object detection/

categorization? This seems to be the case for a given object, but

not necessarily across all objects. For instance, one may be as

fast or faster at identifying one’s grandmother than detecting or

categorizing an unfamiliar insect. Moreover, while one can

conceptually distinguish between categorization vs. identifica-

tion tasks, these and other object recognition tasks are all

fundamentally similar, in that they are all classification tasks.

The specificity with which one can classify a given object

depends on many factors, including the object in question, the

subject’s familiarity with the object, and the stimulus duration.

Therefore, in order to compare the time it takes to complete the

various object recognition tasks, one has to be able to account

for the differences in these parameters, which is extremely hard

to do. Thus, while it is true that all other things being equal,

identification (i.e., fine categorization) generally takes longer

than the corresponding coarse categorization, it is impossible to

assert this a priori for a given pair of different objects.

2.3.1. Characterizing the temporal evolution of visual

percepts

Traditional methods of measuring visual percepts are

inadequate for this purpose, not only because natural images

tend to be exceedingly complex, but also because our

understanding of them is ultimately semantic and subjective,

as you may have noticed in case of Fig. 1. Fei-Fei et al. (2007)

devised a novel, and decidedly unorthodox, methodology to

address this problem. Using a Google image search based on

keywords suggested by experimental subjects, they collected

photographs of 44 indoor scenes and 46 outdoor scenes. In the

first stage of the experiment, another set of naive subjects freely

viewed these stimuli for 27, 40, 53, 67, 80, 107, or 500 ms,

depending on the stimulus and subject. Note that only the

500 ms stimulus duration is generally considered long enough

to allow eye movements (but see Henderson and Hollingworth,

1998, 1999), although this issue is not crucial in this context.

A given subject saw a given image only once during the

entire experiment, but different subjects viewed a given image

for different stimulus durations, so that each image was viewed

for a given duration by many subjects. After viewing a given

stimulus and the ensuing mask, the subject freely recalled and

wrote down, in as much detail as possible, what he/she saw in

the image. In the second stage, the authors created, based on the

images, a list of 105 scene descriptors belonging to six different

scene categories: inanimate objects, animate objects, outdoor

scenes, indoor scenes, visual/perceptual features, and event-

related. Within each category, the descriptors were hierarchical.

For instance, in the animate subject category, the descriptors

ranged from generic (e.g., ‘animal’ or ‘people’) to progres-

sively more specific (e.g., ‘bird’, ‘penguin’, and so forth). Based

on this list, yet another set of naive subjects determined whether

a given free-recall description by the subjects in the previous

stage used one or more of the scene descriptors and, if it did,

whether the descriptor was accurate given the image. Thus, this

process attempts to provide an objective description of the

temporal changes in the percept by assessing the shared aspects

of the subjective visual experience. This is the crucial

innovation of this study—objectivity by shared subjectivity.

The authors found that within a single glance (i.e., stimulus

durations of �107 ms), human subjects perceive and recall

much object and scene level information (cf . Section 2.2). For

instance, for a particular image presented for 107 ms, one

subject accurately reported having seen an outdoor scene ‘‘. . .
with a black, furry dog running toward the right of the picture.

His tail is in the air and his mouth is open. Either he had a ball in

his mouth or he was chasing after a ball’’. As expected, the

percepts tended to be more detailed when the same given

stimulus was presented for 500 ms. For instance, at this

stimulus duration, the aforementioned image was described by

a different subject as that of ‘‘. . . a black dog carrying a gray

frisbee in the center of the photograph. The dog was walking

near the ocean, with waves lapping up on the shore. It seemed to

be a gray day out.’’

Subjects were somewhat more likely to perceive a given

natural scene as an outdoor scene rather than as an indoor scene.

Another intriguing asymmetry was that the subjects were much

more likely to accurately perceive the overall scene context

when they recognized an inanimate object in the scene vs. when

they recognized an animate object. The reason for either

asymmetry is unclear. In addition, the reporting of sensory or

feature level information of a scene, such as shading, shape,

etc., consistently preceded the reporting of the semantic-level

information. Subjects tended to perceive shape-related infor-

mation slightly sooner than semantic information. But once

subjects recognized the more semantic-level components of a

scene, there was little evidence of a bias toward scene level

recognition (e.g., outdoors) over object level recognition (e.g.,

dog), or vice versa.

The result that visual percept gets more elaborate and more

semantic, or abstract, over time is consistent with the results of
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a large body of previous research using simpler, geometric

stimuli and more conventional methods (Henderson and

Hollingworth, 1999; Pylyshyn, 2003). Note that semantic

understanding of the scene is not the same as verbal

understanding. There is evidence that the former is faster than

the latter. For instance, it takes slightly less time to categorize

an object from its image than it takes to categorize the same

object from its spoken name (Potter and Faulconer, 1975). But

the nature of semantic vs. verbal understanding of visual objects

is a matter of debate (Henderson and Hollingworth, 1999;

Pylyshyn, 2003).

2.3.2. Occlusion, clutter, and other complexities of natural

scenes

One important limitation of a great majority of the temporal

dynamic studies is that, even when they use natural stimuli, they

typically avoid many of the common complexities of natural

visual scenes. In natural scenes, factors such as occlusion,

visual clutter, camouflage, and variations of lighting, shadows,

color texture, etc., can complicate scene segmentation, object

recognition and scene understanding. For instance, it is unclear

whether viewers can detect occluded or camouflaged animals as

rapidly as the unoccluded animals in plain sight as in the studies

of Thorpe et al. (1996). For one thing, studies using simulated

occlusion (as opposed to natural images with occluded natural

objects) indicate that top–down factors such as prior knowledge

of the occluded object are likely needed in order to compensate

for the missing information about the occluded objects (Bar,

2004; Johnson and Olshausen, 2005b; Hegdé et al., in press). It

has been shown recently object-selective brain regions such as

in the lateral occipital complex (LOC) and the dorsal foci (DF)

contain subregions that are more responsive to occluded objects

than their unoccluded counterparts (Hegdé et al., in press; also

see Lerner et al., 2002). But whether such functional

specializations may somehow obviate the need for top–down

influences is unclear. Ultimately, understanding the effects of

these complexities is a key part of understanding natural vision

(Box 4).

2.4. Insights from masking studies

Masking refers to the reduced visibility of one stimulus,

called the target, by another stimulus, called the mask (for

reviews, see Breitmeyer, 1984; Öğmen and Breitmeyer, 2006).

In a typical masking experiment, referred to as backward

masking, a target is followed by the mask after a given delay.

Either stimulus need be presented only briefly, for as little as

few tens of milliseconds, but the duration of the SOA is much

more critical. While there are many other types of masking

paradigms, such as forward masking, mutual masking and so

forth, backward masking is most directly useful for studying the

temporal dynamics of visual perception, since it allows the

experimentor to disrupt the processing of the target at various

time points while keeping the stimulus duration itself

unchanged, and ask how the corresponding visual percept

changes. The mechanisms of masking are far from clear, but it

is generally thought that it works by disrupting the reentrant

processing of the target (Enns et al., 2006). Recurrent (or

reentrant) processes bring the top–down, cognitive factors to

bear on processing of the target, typically after the initial

image-driven, feed-forward sweep (see Section 3.1 for details).

For this reason, tasks that (arguably) require little or no top–

down processing, such as detection, are less sensitive to

masking than those that almost certainly require it, such as

identification (Grill-Spector and Kanwisher, 2005; also see

Fig. 4).

In a classic backward masking experiment, Bachmann and

Allik (1976) used two geometric forms of equal area, without

noise or background, as the target and the mask, each presented

briefly (10 ms). They measured the ability of the subjects to

identify the target as a function of increasing SOAs. They found

that when the SOAwas 0 ms, i.e., when the two stimuli came on

simultaneously, the two stimuli tended to be perceived as a

single blended object. With SOAs of 40–80 ms, the target was

least visible and the identification of the target decreased to

about chance level, suggesting that the recurrent processing

during this period is crucial for identification. It took an SOA of

about 150 ms for the target to be perceived as a stable, distinct

shape, and reliable identification took an SOA of 250 ms or so,

indicating the time points by which the corresponding

processes are effectively complete.

Masking studies such as this serve to illustrate two larger

points. First, they highlight the critical importance of recurrent

processing, since the target is not perceived without it. In other

words, it is a huge mistake to think of temporal dynamics, and

of visual perception at large, as a primarily image-driven

process (also see Hegdé and Felleman, 2007). Second, the

temporal dynamics of the underlying neural processes are

probably a major determinant (or bottleneck) of the temporal

dynamics of visual perception. In the above experiment, for

instance, the underlying stimuli and task were simple and did

not vary with the SOA, so that the percept more or less directly

reflected the processing time allowed. Thus, in this case, the

processing bottlenecks were likely to have been a more

important determinant of the temporal dynamics of the percept

than the underlying perceptual hypotheses. Note that the

Bayesian framework readily accounts for this, by taking the

information processing bottleneck into account.

2.4.1. ‘Masking’ by transcranial magnetic stimulation

(TMS)

In TMS, a very brief electromagnetic pulse, lasting 300 ms

or so, is delivered non-invasively from a magnetic coil placed

over the scalp (for reviews, see Anand and Hotson, 2002;

Kammer, 2006). TMS pulse is known to produce a complex

pattern of excitation and inhibition in the brain region directly

underneath the coil, as well as a pattern of more indirect activity

in more distant regions, and probably acts by eliciting

inhibitory postsynaptic potentials in the cortex (see Moliadze

et al., 2003, and the references therein).

In one of the first studies of its kind, Amassian et al. (1989)

showed that a single pulse of TMS applied over the occipital

cortex in human subjects disrupted visual processing, depend-

ing on when the stimulation was delivered relative to visual

J. Hegdé / Progress in Neurobiology 84 (2008) 405–439 413



Author's personal copy

stimulus. Subjects were presented with three different random

letters simultaneously, and a TMS pulse was delivered after

various delays. When the delay was less than about 60 ms, or

more than about 140 ms, subjects were able to correctly

identify the letters they saw. At delays of 80–100 ms, a blur or

nothing was seen. The authors concluded that the neural

activity subserving letter recognition is probably transmitted

from the occipital cortex within 140 ms of the visual stimulus.

Thus, the essential advantage of TMS is that, unlike visual

masking, it can disrupt the processing in restricted parts of the

brain. Moreover, since TMS is non-invasive, it can be easily

used in human subjects who, unlike monkeys, can be readily

made to perform complex tasks and report nuanced, abstract

percepts. Its main disadvantage is its poor spatial resolution,

especially compared to the more invasive techniques such as

microstimulation (see Section 3.8).

2.5. Effects of stimulus history: priming

Priming is the phenomenon where the perception of a given

stimulus, or the prime, affects the perception of a succeeding

stimulus, or the target, even when the prime is presented after a

long delay or is not explicitly perceived (for reviews, see Wiggs

and Martin, 1998). Depending on the stimuli involved, the prime

can facilitate or impair the perception of the target ( positive- or

negative priming, respectively). The effects of priming are

usually evident as changes in the reaction time, target recognition

performance, and/or error rates. Whether priming has other

significant temporal dynamic effects, e.g., whether it ‘short-

circuits’ visual processing or qualitatively alters the percept, is of

course much harder to address and remains unclear. While

priming has been the subject of considerable research over the

last two decades, its relevance to the present context is that it is

one of the more easily controlled top–down factors that influence

the temporal dynamics of visual processing.

In an illustrative experiment, Vorberg et al. (2003) primed

the subjects with a leftward arrow for 14 ms and, after

systematically varying SOAs, presented the target, also an

arrow, for 140 ms. Depending on whether the trial represented a

congruent or incongruent condition, the target arrow pointed in

the same or the opposite direction, respectively, as the prime.

The authors required subjects to report direction in which the

target arrow pointed, and measured the reaction times in either

condition as a function of the SOAs that ranged from 0 to

70 ms. In the congruent condition, the reaction times fell

monotonically as a function of SOA, indicating that in this case,

the prime speeded up the perception of the target ( positive

priming). In the incongruent condition, the prime slowed down

the perception of the target (negative priming). In this

experiment, the subjects did not perceive the brief prime

(making it an instance of subliminal- or masked priming), but

the results were similar when the subjects did perceive the

prime (Schwarzbach and Vorberg, 2006). For intermediate

differences in the orientation of the two arrows, the effects were

correspondingly intermediate, indicating that the degree of

priming was roughly commensurate with the similarity

between the two stimuli.

In a similar experiment, Zago et al. (2005) studied the effect

of varying the duration of the prime stimulus while holding the

SOA constant. The facilitation by priming showed a classic

‘rise-and-fall’ pattern, in which the facilitation continued to

increase for prime durations of up to 250 ms and decreased to

lower levels thereafter and remained significantly above chance

levels for up to 1900 ms. In other words, top–down influences

have time windows during which they are most effective, but

the optimal time windows vary depending on many factors,

including the task.

How does priming work in natural scenes, where the object

shapes can vary in forbiddingly complex ways? Perhaps the

simplest case is repetition priming, when repeated looks at the

same object makes it easier to see, something you may have

noticed in demo experiment in Section 1.1. For images of

isolated natural objects, priming (both positive and negative)

has been shown to be object-specific and, to a limited degree,

invariant to various transformations (Bar and Biederman,

1999). It is unclear whether this means that priming operates in

similar fashion in natural scenes with multiple objects, although

it has been reported that those objects in a natural scene that the

subjects consistently fail to see tend to be those that also elicit

negative priming when presented alone (VanRullen and Koch,

2003).

As noted above, the main known temporal dynamic effect of

priming is that it can alter the speed and reliability of object

recognition. The neuronal mechanisms of this process are

largely unclear. Given the limited translational invariance of

subliminal priming, Bar and Biederman (1999) proposed that

areas at intermediate levels of visual processing, such as areas

in the posterior temporal cortex, may mediate priming. Using

functional magnetic resonance imaging (fMRI) of the temporal

cortex, Zago et al. (2005) have reported evidence that suggests

that there are two different temporal dynamic processes at work

in priming—one earlier acting process that fine-tunes (or

sharpens) the selectivity of neurons in the relevant areas, and a

slightly delayed adaptation process that ‘sparsens’ the

responses. This sparsening selects a small subpopulation of

neurons and ‘shuts down’ the rest. Zago et al. suggest that the

collective effect of these two processes is the classic ‘rise-and-

fall’ pattern, in which the effect of priming increases for prime

stimulus durations of up to 250 ms and decreases thereafter.

It is worth noting that the aforementioned sparsening is

reminiscent of the sparsening at the neuronal level described in

Section 3 (also see Box 3), although it remains to be seen

whether the two sets of processes are fundamentally related.

2.6. Perceptual learning and familiarity

It is intuitively obvious that familiar objects, such as

Einstein’s face or the Eiffel Tower, can be recognized much

more readily than unfamiliar objects. Conversely, the speci-

ficity with which one perceives a given object or scene tends to

depend on one’s expertise with the subject. A bird expert might

detect a Eurasian Tree Sparrow in an image, whereas a naive

subject may simply see a bird under the same experimental

conditions. There is a large body of evidence that learning and
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familiarity can improve object recognition performance by

decreasing reaction time, increasing the specificity of

classification, reducing error rates, and/or increasing the

certainty of decisions (for reviews, see Fahle and Poggio,

2002; Hochstein and Ahissar, 2002; Ahissar and Hochstein,

2004). Indeed, the priming effects outlined in the previous

section reflect a rapid form of perceptual learning.

Whether prior knowledge and familiarity simply expedites

the recognition process or changes the process more

qualitatively is a matter of some debate (see Fahle and Poggio,

2002). In any event, there is evidence that some types of object

recognition, such as the aforementioned ultra-rapid categoriza-

tion, cannot be speeded up by training. Fabre-Thorpe et al.

(1998) trained human subjects extensively over a 3-week period

to report whether a given natural scene contained an animal or

not. After the training, they monitored the ERPs while the

subjects performed the same task. The authors found no

difference in the brain activity elicited by novel vs. familiar

stimuli; both types of stimuli could be categorized equally fast.

One explanation for this phenomenon is that the ultra-rapid

categorization represents the fastest possible formation of a

visual percept, and cannot be speeded up further. Another

possibility is that the training did improve performance, but the

task parameters (e.g., stimulus duration or low-level image

differences) were not difficult to distinguish between the

performances with the two sets of images. This latter scenario is

plausible, since the accuracy of the subjects was slightly higher

for familiar stimuli than for novel stimuli (96.9% vs. 94.7%

correct, respectively).

In any event, it is easy to conceptualize the role of perceptual

learning, and knowledge resulting from it, in temporal

dynamics within the Bayesian framework: prior knowledge

is one of the many top–down influences that helps the visual

system to better interpret the visual image by ‘making up’ for

the ambiguities in the bottom–up information. The reason why

perceptual training does not improve detection performance (to

the extent it does not) may be that the results of bottom–up

processing suffice for the relevant detection tasks, and top–

down processes are not needed.

It is important to emphasize that, while the Bayesian

framework shows that the brain can use prior knowledge to

resolve ambiguities, it cannot yet explain how the brain does it.

For instance, the Bayesian framework cannot yet explain how

the brain selects which aspect of the vast body of prior

knowledge is relevant to the task at hand (Hegdé and Felleman,

2007). But the reverse hierarchy theory (RHT; Hochstein and

Ahissar, 2002; Ahissar and Hochstein, 2004) provides a

comprehensive framework within which to relate the effects of

visual perceptual learning with visual perception. RHT and the

Bayesian framework are entirely consistent with each other, but

RHT is a more neural-level framework.

Briefly, RHT has two interrelated components. The first, and

more directly relevant to the present context, has to with the

visual processing steps. RHT posits that the initial vision at a

glance is mediated by high-level areas, and that the subsequent

vision with scrutiny involves recruitment of progressively lower

visual areas, which contain fine-grained image information, to

add finer details to the percept. In other words, during the

initial, feed-forward sweep of processing, the information

processing proceeds up the various stages of the visual

hierarchy (Felleman and Van Essen, 1991) in an automatic and

implicit fashion. Our initial explicit (or conscious) percept of

the scene, or vision at a glance, reflects the gist of the scene

based on the activity of the topmost level of the hierarchy after

this initial feed-forward sweep. Subsequent vision with scrutiny

is mediated by feedback processing, which proceeds in the

reverse direction down the hierarchy, focusing attention to

specific, active, low-level units, and incorporating the more

detailed information available there into the conscious percept

(see Fig. 1 of Hochstein and Ahissar, 2002).

The second component of RHT is that perceptual learning

parallels perception, in that it proceeds in a top–down fashion.

Learning begins at high-level areas of the visual system, and

when learning-dependent changes in these areas do not suffice,

it proceeds to progressively lower levels as necessary, where the

neurons convey finer-grained visual information. Thus, this

theory predicts not only that training improves performance in

easier tasks first, but also that these early training effects should

be most evident in higher visual areas. Conversely, more

difficult perceptual tasks, such as those that require finer

discrimination, should show slower improvement with training,

and the training-dependent effects should be more evident in

lower visual areas. In general, these predictions have been

empirically borne out (Hochstein and Ahissar, 2002; Ahissar

and Hochstein, 2004).

The relevance of RHT to our context is that it represents a

neural model of visual perception in general, and visual

temporal dynamics in particular. But there are alternative

models of visual perception that also appear to explain many

aspects of visual perception, including its temporal dynamic

aspects, as outlined in the next section.

2.7. Facilitation of scene perception by context

Visual perception is facilitated by the visual context. It is

likely easier to recognize a piece of tinsel on a Christmas tree

than along a wilderness trail. Thus, our expectation of what we

are likely to see influences what we do see, and how quickly or

easily we see it (for reviews, see Henderson and Hollingworth,

1999; Bar, 2004).

In an influential study, Biederman (1972) showed that

subjects were much more accurate in identifying a single cued

object in a coherent real-world scene than when the scene was

jumbled. Jumbling the objects in a scene impaired identification

performance even when the subjects knew where to look and

what to look for. Thus, meaningfulness of an object’s context

appears to affect the course of perceptual recognition itself, and

not just peripheral scanning or memory.

However, the mechanisms by which visual context facil-

itates visual perception are not altogether clear. One broad set

of views is that the analyses of context and of objects proceed in

parallel during the initial temporal phase of visual processing,

and only later are the two sets of information brought together.

The support for this view comes, among other things, from the
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fact that basic level object categorization can take place rapidly

and in the apparent absence of contextual information

(Henderson and Hollingworth, 1999; also see Section 2.2).

A second class of views holds that the visual system first

extracts the context information relatively rapidly, and uses the

contextual information to facilitate object recognition (Bieder-

man, 1972; Palmer, 1975). For instance, as Bar (2003, 2004)

points out, an umbrella, a mushroom and an acacia tree all have

the same approximate overall shape, but each is easier to

identify in its correct context.

In support of this latter set of views, Bar (2004) has proposed

a model of how top–down effects such as visual context and

prior object knowledge facilitate object recognition (Fig. 5; also

see Bar, 2003; Bar et al., 2006). He proposes that low-spatial

frequency content of the image, which carries information

about the ‘gist’ of the scene, is processed relatively fast in the

early visual areas and conveyed to specific high-level areas in

the prefrontal cortex (PFC). Based on this low-resolution

bottom up information, PFC areas generate some likely

interpretations of the objects in the visual scene and convey

this information to the object-selective regions in the inferior

temporal cortex (ITC). Similarly, the parahippocampal cortex

(PFC) and other brain regions use the low-frequency

information to generate likely interpretations of the scene

context. The high-spatial frequency content of the image, which

contains finer-grained information about the object, is

processed more slowly by the early visual areas and projected

directly to ITC. In ITC, the high-spatial frequency-based,

bottom–up information coming in from the early visual areas

and the top–down information about the plausible interpreta-

tions of the object and the scene context coming in from higher

visual areas are combined to arrive at a likely interpretation of

the image (also see Section 4.5).

While a detailed comparison of this model and the

aforementioned RHT is beyond the purview of this review, it

is worth noting that the two models seek to explain essentially

the same perceptual phenomena using very different styles of

coarse-to-fine processing (although RHT does not explicitly

use the phrase ‘coarse-to-fine’). Other notable differences

include the fact that RHT explicitly posits potential roles for all

visual areas and for selective attention. On the other hand, the

Bar model formulates visual perception explicitly as a process

of inference that generates a likely interpretation given the

image data and prior knowledge, in the same vein as the

aforementioned Bayesian framework. The Bar model also

specifically addresses the facilitative effects of visual context

(for more on the Bar model, see Section 4.5).

One aspect of the effects of visual context that has received

little direct attention is that visual context itself is often

hierarchical, so that the processing of contexts may follow the

same overall pattern as that of objects outlined above. For

instance, indoor scenes can be readily distinguished from

outdoor scenes, but perceiving whether a given scene is that of

living room or dining room is likely to take longer.

2.8. Temporal changes in the processing of low-level image

parameters

In addition to the aforementioned temporal changes in the

high-level percepts, the processing of many low-level stimulus

Fig. 5. The Bar model of visual perception. The model posits that a coarse-grained (or low-spatial frequency) representation of the object originates from the early

visual areas (including V2 and V4), and reaches high-level brain areas (including PFC) relatively fast (top left arrow). Top–down signals about some of the plausible

interpretations of the object project from PFC to object-selective regions in ITC (top right arrow). In ITC, these plausible interpretations are combined with the finer

grained, high-spatial frequency-based representation of the image reaching the ITC more slowly (squiggly arrow) to generate a likely interpretation of the object.

Contextual information is processed similarly (bottom half of the loop), except that the relevant plausible interpretations are thought to be generated in PHC instead of

PFC. Figure redrawn from Bar (2004) with permission. Subsequent studies have added some anatomical details to the model (Bar et al., 2006).
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parameters also changes rapidly in time (for a review, see

Rodieck, 1998). These phenomena are worth taking a close

look at, especially because it is unclear whether or how they fit

into the aforementioned scheme of visual perception as coarse-

grained categorization followed by finer-grained classification,

such as identification.

2.8.1. Stereoscopic disparity

Most computational models of stereopsis postulate that the

visual system first computes the correspondence between

images from the two eyes on a coarse spatial scale, and

subsequently uses this information to constrain binocular

correspondence on a finer spatial scale, thus minimizing the

number of false matches between the two monocular views

(Howard, 2002). While there is psychophysical evidence for

this view, there is also evidence for a fine-to-coarse progression

of binocular fusion, in which information on a finer spatial scale

can constrain the correspondence on a coarse spatial scale

(Smallman, 1995; Rohaly and Wilson, 1993, 1994; also see

Menz and Freeman, 2003; Ringach, 2003).

Thus, either coarse-to-fine or fine-to-coarse processing by

itself fails to fully capture the complexity of the process. A

more nuanced view may be that the system dynamically uses

information across different spatial scales as needed to

constrain estimations of binocular correspondence (also see

Ringach, 2003, p. 8).

2.8.2. Luminance and luminance contrast

Human observers detect brighter flashes of light faster than

they detect dimmer ones under otherwise identical conditions.

This is an aspect of Pieron’s law. Conversely, Bloch’s law states

that as the stimulus intensity I increases, it takes correspond-

ingly shorter stimulus duration T to produce the same response

R, so that R = I � T. It has also been shown that reaction times

decrease approximately as the power function of the product of

contrast and spatial frequency (see Ludwig et al., 2004, and the

references therein).

Although these results were obtained using simple

geometric stimuli and it is unclear to what extent they apply

to natural stimuli, they nonetheless raise the possibility that

under natural viewing conditions, image elements that have

higher luminance and/or contrast have greater perceptual

salience, and are perceived more readily. Indeed, there is strong

evidence that the high-contrast regions tend to be more

effective in attracting attention, presumably by attracting

saccades (Einhauser and Konig, 2003; also see Henderson and

Hollingworth, 1998, 1999). Beyond this, whether the temporal

dynamics of the processing of luminance and contrast plays a

role in other perceptual-level changes, such as shape

perception, is unknown.

2.8.3. Color sensitivity

It is known that for brief stimulus durations at a given spatial

frequency, visual perception is monochromatic, i.e., we

perceive the stimulus as gray. At moderate presentation

durations, the perception is dichromatic, i.e., we fail to

perceive blue-yellow contrast variations. At longer durations,

the perception is trichromatic. But the color sensitivity covaries

with that of space and time, so that in all three cases, human

subjects are maximally sensitive to medium frequencies

(Wandell, 1995). Again, it is unclear precisely how the

temporal dynamics of color processing influences that of

natural scene perception, although it is known that in natural

scenes, colored objects are easier to recognize and remember

than black-and-white objects (Gegenfurtner and Rieger, 2000).

2.8.4. Spatial frequency

We will examine this topic in some detail, because many key

models of visual perception, including the aforementioned Bar

model, critically depend on it (see Sections 2.7, 3.3–3.8, 4.5, 6;

Fig. 5). Here, we will limit ourselves to examining the relevant

psychophysical evidence.

Much of what we know about the temporal aspects of spatial

frequency processing comes from the studies of contrast

sensitivity as a function of temporal frequency (i.e., how fast the

stimulus flickers in time). But given the non-linearities in the

visual system, it is hard to infer the temporal changes in spatial

frequency sensitivity from the temporal frequency sensitivity

data (Watson, 1986). In other words, it is hard to extrapolate

from temporal frequency to processing duration.

One of the few studies that have directly addressed the

spatial frequency processing as a function of processing

duration was carried out by Hughes et al. (1996). They

addressed whether the aforementioned global precedence effect

(Section 2.1) can be explained in terms of spatial frequency

processing. Recall the two hallmarks of the global precedence

effect: first, global shapes are processed faster than the local

shapes (global dominance). Second, when the global vs. local

shape cues conflict as in a global T created by many local S’s, it

becomes harder to recognize the shape of the local shapes, but

not the global shape (asymmetric interference).

In the case of Hughes et al., the global stimulus was a low-

spatial frequency (1 cpd) sinusoidal grating oriented vertically

or horizontally. The local stimulus was a similar grating, but of

a higher spatial frequency (9 cpd), superimposed on the 1 cpd

grating. They found that the subjects were faster and more

accurate in reporting the orientation of the 1 cpd grating than

that of the 9 cpd grating (global dominance effect). When the

two gratings had different orientations, subjects performed

better with the 1 cpd grating than with the 9 cpd grating

(asymmetric interference). Furthermore, by systematically

varying the SOAs of the low-frequency grating, Hughes

et al. found that the low-frequency grating was able to interfere

with the processing of the high-frequency grating for at least

100 ms after the onset of the high-frequency grating, but not the

other way around. Taken together, these results indicate that the

processing of the low-frequency gratings precedes that of the

high-frequency gratings. Thus, the dynamics of spatial

frequency processing may underlie the global precedence

effect, since the former captures the essential features of the

latter rather well. However, Hughes et al. caution that ‘‘low

frequencies and global image attributes need not be one [and]

the same thing’’ and that global image attributes are not

attributable to low-spatial frequencies (p. 225).
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Parker et al. (1992, 1997) have provided another line of

evidence for spatial frequency-based coarse-to-fine processing.

For each of their raw images, they created three bandpassed

images that contained the low, medium or high-spatial

frequency contents of the raw image. Subjects had to

discriminate between a given raw image presented for

120 ms from a simultaneously shown sequence of the three

corresponding bandpass images, each presented for 40 ms.

They found that the subjects were significantly less able to tell

the raw images from the bandpass ones if the bandpass images

were presented in low-to-high sequence than if they were

presented in a high-to-low sequence. In other words, the low-to-

high sequence appeared similar to the raw image, suggesting

that the visual system processes the image in that order.

These results have inspired many subsequent models of

coarse-to-fine processing rooted in the processing of low- vs.

high-spatial frequencies. These models have differed on

whether the spatial frequencies are defined in terms of the

retinal image or of the object itself. The ‘retina-based’ models

posit that spatial frequency channels analyze the various spatial

frequencies in the retinal image in parallel, with the lower

spatial frequency analysis preceding the analysis of the higher

frequencies of the retinal image (Parker et al., 1992, 1997;

Hughes et al., 1996; Bar, 2003, 2004; Bar et al., 2006).

Another type of these models, known as ‘flexible-use’ or

‘object-based’ models, takes note of the fact that low-frequency

content of the image is not always the most informative, and

posits that the visual system dynamically extracts the global vs.

local information based both on the information available in the

image and many top–down factors, such as prior knowledge and

the task (Schyns and Oliva, 1997). The distinction between the

two types of models is not just academic, because if the retina-

based models are correct, then it becomes straightforward (but

not necessarily easy, see Section 3.4) to explain the temporal

dynamics of image processing in terms of the known neural

mechanisms of low- vs. high-spatial frequency processing.

A critical test that distinguishes between these two sets of

models is whether the relative ‘informativeness’ of the various

spatial frequencies scales with the retinal image. On this count,

as on many others, both sides claim some supporting

psychophysical evidence (see Morrison and Schyns, 2001;

Sowden and Schyns, 2006).

The promise of the spatial frequency-based models

notwithstanding, it is far from clear that any of these models

provide a general, comprehensive explanation of visual

temporal dynamics. For one thing, natural images cannot be

fully explained solely in terms of its spatial frequency content

(Gallant, 2004). For another, the most informative features of

visual scenes are not always definable by their spatial frequency

content (see, e.g., Biederman, 1995; Oliva and Schyns, 1997;

Torralba and Oliva, 2003; Torralba et al., 2006; Ullman, 2007).

2.9. Summary of psychophysical findings

While the results vary considerably across the various

studies, two sets of findings seem fairly clear. First, one can

detect or categorize objects in complex natural images on an

ultra-rapid time scale. Top–down factors such as attention or

learning have little effect on this process. Second, finer-grained

understanding of the images takes longer, depending on a large

number of bottom–up and top–down factors, including image

complexity, attention, context, familiarity and expertise. Many,

although not all, temporal dynamic phenomena at the

perceptual-level progress in such coarse-to-fine manner. The

reverse hierarchy theory and the Bar model represent two very

different types of models of the coarse-to-fine perceptual

phenomena. The Bayesian framework of sequential inference

appears to provide a more general, albeit entirely untested,

framework within which all temporal dynamic phenomena can

be understood, regardless of whether or not they follow a

coarse-to-fine time course.

3. Temporal dynamics at the neuronal level

3.1. Some relevant temporal dynamic properties of visual

cortical neurons

Much of what we know about visual temporal dynamics at

the neural level comes from single-unit studies in the macaque

monkey. The functional organization of the macaque visual

system (Fig. 6) is similar to that of humans, but has been

understood in much greater detail.

Most neurophysiological studies, including those in this

review, assume rate coding, which posits that neurons convey

information by modulating the rate at which they fire spikes.

However, other aspects of the neuronal response, such as spike

timing, can also convey information (Box 1; also see Rieke

et al., 1996).

Visual cortical neurons typically fire spikes at a low,

‘background’ level in the absence of overt visual stimulation

(see, e.g., Fig. 8a). When a static visual stimulus is presented in

the neuron’s classical receptive field (CRF), there is usually a

brief delay before the response rises above background levels.

This delay, or latency, tends to be on the order of a few tens of

milliseconds in early visual cortical areas such as V1 or V2, and

becomes progressively longer (lasting several tens of milli-

seconds) in higher visual areas, such as those in the

inferotemporal cortex and the frontal cortex (Schmolesky

et al., 1998; Bullier, 2001; also see Lamme and Roelfsema,

2000). In the macaque, where the latencies have been measured

in detail, some neurons in all visually responsive areas,

including frontal and motor cortices will have been activated by

about 190 ms after the stimulus onset (Fig. 6b; also see Lamme

and Roelfsema, 2000). The response latencies in the human

brain are generally longer by a few tens of milliseconds,

depending on the brain region (see Yoshor et al., 2006, and the

references therein). This is presumably because the human

brain is physically larger, so that the neuronal signals must

travel farther. The feed-forward and feedback connections

conduct information at a velocity of about 2–3.5 m/s (Girard

et al., 2001; Bullier, 2001). The lateral connections, or

connections between neurons within a given area, conduct

about ten times slower, about 0.33 m/s. Note that this does not

necessarily mean that lateral interactions have longer latencies,
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since lateral connections are often physically shorter (Lamme

and Roelfsema, 2000; Bullier, 2001). Processing mediated by

feedback and/or lateral connections is often collectively

referred to as recurrent or reentrant processing. Across the

visual cortex, the synaptic delays are negligible for electrical

synapses, but tend to be about 5–20 ms per synapse for

chemical synapses (see Azouz and Gray, 1999, and the

references therein).

Altogether, response latencies in a given area vary

considerably depending on the neuron, stimuli, and the

experimental and analytical methods used for measuring the

latency, and typically overlap substantially with those of other

areas, so that a given latency is not unambiguously diagnostic

of any single area. This also means that response latencies

usually cannot be directly compared across studies.

When a static stimulus is presented within its CRF, a typical

visual cortical neuron, after a delay, fires rapidly for a few tens

of milliseconds, depending on the neuron. After this initial

transient (or onset transient) response, the firing rate decays

rapidly, before largely stabilizing at a lower response level over

the next few hundred milliseconds. It is thought that feed-

forward inputs fully account for the response transients,

whereas recurrent processing plays a major role in shaping the

post-transient response (see Lamme and Roelfsema, 2000;

Scholte et al., 2006). When the stimulus is turned off, the

response shows another, smaller, transient increase (‘offset

response’; see arrowhead in Fig. 8a), before decaying to

background levels. The offset response tends to be more

common in lower visual areas than in higher visual areas.

The response pattern of subcortical neurons tends to be

somewhat different from that of cortical neurons. Most notably,

the post-transient response decay is often less pronounced in

subcortical neurons (Purpura et al., 1990; Hawken et al., 1996).

The noise, or random variations in the firing rate across

different presentations of the same stimulus, roughly follows

the same overall temporal pattern as the firing rate (Hegdé and

Van Essen, 2004, 2006). However, the temporal interplay of

signal and noise is such that the signal-to-noise ratio, or related

measures of information transmission, are generally maximal

during the initial transient response and lower later, although

they tend to remain statistically significant throughout the

response (Oram and Perrett, 1992; Müller et al., 2001; Hegdé

and Van Essen, 2004, 2006). Roughly 10% of the noise is

correlated noise, in which trail-to-trial variations in the

response are correlated between two (usually nearby) cells

regardless of the stimulus. While correlated noise can be

computationally important, most neurophysiological studies

ignore this potential complexity (Averbeck et al., 2006).

It is worth emphasizing that the above description of the

typical response pattern of a visual cortical neuron is necessarily

simplistic, in that it describes the response resulting from

presenting static stimuli with the CRF. Additional factors that

come into play under natural viewing conditions – including the

stimulation of the surrounding non-classical receptive field

(nCRF), movements of the eye, observer and visual objects, and

top–down influences – modulate the neural response in complex,

often unpredictable, ways (Lamme and Roelfsema, 2000;

Bullier, 2001; Gallant, 2004; Smith et al., 2006).

In Sections 3.2–3.9, we will examine some key temporal

dynamic phenomena at the neuronal level. Readers should be

forewarned that not all these results will fit neatly into a

coherent, larger temporal dynamic picture. The reasons for

Fig. 6. Functional organization of the macaque visual system. (a) Flow chart illustrating the feed-forward flow of visual information from the retina to the frontal lobe

along the dorsal pathway ( parietal lobe, left) and the ventral pathway (temporal lobe, right). The boxes illustrate some key stages of visual processing. Only some of

the known visual cortical areas are shown, and pathways of recurrent processing are not shown. Macaque IT contains many subdivisions, two which (PIT, AIT) are

shown here. For details on functional organization of the macaque visual system, see Felleman and Van Essen (1991) and Hegdé and Felleman (2007). (b) Response

latencies of key brain regions involved in a typical object recognition task, leading up to the motor command. Yellow and black arrows denote subcortical and cortical

information flow, respectively, in the feed-forward direction. Feedback and lateral connections are not shown. Only the temporal pathway is shown, because it is

presumed to dominate object recognition. The presumed role of key areas in object processing is indicated (square brackets). Figure in panel b was adapted from

Thorpe and Fabre-Thorpe (2001) with permission. The brain shown is an actual macaque brain, slightly unfolded for greater clarity using the CARET toolkit (Van

Essen et al., 2001). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
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presenting these results in their disparate complexity is that they

represent the current state of the field, and that an understanding

of the response dynamics of different visual areas is critical to an

eventual fuller understanding of visual temporal dynamics.

3.2. Redundancy reduction and adaptive filtering in early

visual processing

Dan et al. (1996) compared the responses of lateral

geniculate (LGN) cells in the anesthetized cat to 20–60 min

stretches of natural movies (one of which happened to be

Casablanca) and of white noise control stimuli. As expected,

there was substantial temporal correlation, or redundancy, in

the natural movies, with more power at the lower temporal

frequencies, so that the power spectrum was ‘pink’. But the

LGN responses to the movies had a ‘whitened’ temporal power

spectrum, with roughly comparable power over a relatively

wide range of temporal frequencies (3–15 Hz), including the

frequencies that were redundant in the movies. Such whitening

makes the neural responses more efficient by reducing the

redundancy in the information, just like removing duplicate

pages from a book would. Interestingly, the responses of

Box 1. Ultra-rapid image processing using spike timing

Most neurophysiological studies assume rate coding, i.e., that neurons convey information by modulating the rate at

which they fire spikes. However, many recent studies have shown that, under some circumstances, the timing of a given

spike can also convey information. Such spike-time coding is based on the notion that spike latency is a function of the

value of given visual feature. In the domain of luminance, for instance, this means that cells respond sooner to a brighter

stimulus, and with a greater delay for a darker stimulus. Thus, when stimulated with a black-and-white pattern (blank and

blue regions, respectively; far left, panels a and b), the cells corresponding to the brighter parts fire their first spikes (blue

vertical line in the corresponding spike train) earlier than the cells with darker parts of the image in their receptive fields.

Thus, earlier spikes correspond to brighter parts of the image. Note that time progresses from right to left in this figure, so

that the earlier spikes are to the right of the later spikes.

An extreme version of spike-time coding is the rank order (or ‘recruitment’ order) coding, in which the temporal order,

rather than the precise timing, of the first spikes convey the image intensity information. Note that in all of these schemes,

spikes that occur after the first spike in a given neuron (yellow vertical lines) convey no additional information about the

stimulus. Thus, rank order coding is essentially first-spike coding. It is roughly analogous to deciding election results

based on the very first vote cast across the various precincts.

Neurophysiological studies of visual, olfactory, somatosensory and auditory systems indicate that such coding is a

plausible mechanism for ultra-rapid, coarse-grained representation of the sensory stimulus (VanRullen et al., 2005).

These studies also serve to illustrate the larger point that sensory representations can be achieved using coding schemes

other than rate coding. Rate coding can be no faster than spike time coding because, by definition, rate coding must

sample spikes that occur over a stretch of time.

A major problem with spike-time coding is that in order to interpret this code, the system needs to know the time of

stimulus onset, so that a given spike thereafter can be designated as the first spike from the given neuron to the given

stimulus (VanRullen et al., 2005). In more general terms, the system needs to have a reference time point against which a

given spike is the first spike. Under natural viewing conditions, designating such reference time points can be

problematic, since the retinal image changes dynamically and complex ways with no easily definable onset.
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the same cells to white noise did not show this whitening effect,

suggesting that the LGN cells are optimized to convey efficient

information about natural scenes.

Importantly, this effect was evident in the responses

collected over several tens of minutes, and not evident in the

shorter subsets of response. As such, it is unknown whether

comparable whitening effects can take place over a few hundred

milliseconds (and a correspondingly scaled temporal frequency

range).

It is also unclear whether LGN cells are hard-wired to whiten

natural stimuli to begin with, or whether this property somehow

adaptively evolves over the course of the movie or the

experiment. However, there is evidence that cells in the cat

primary visual area (striate cortex or area 17, homologous to

monkey V1) dynamically adapt to visual stimuli. Sharpee et al.

(2006) have reported that the responses of many cells in the

striate cortex of the anesthetized cat adaptively change to a

given set of stimuli, over the course of 40 s to many minutes, so

as to maximize the information conveyed about the stimuli. The

main effect of this adaptive change is to increase the sensitivity

of the cells to underrepresented spatial frequencies. In other

words, these cells act like a set of filters that adapt to optimally

process the visual input.

3.3. Disparity tuning in the primary visual cortex

As noted in Section 2.8, many computational and

psychophysical studies indicate that the extraction of disparity

proceeds in a coarse-to-fine fashion, although there is also some

evidence for the opposite, fine-to-coarse, scenario. Recent

notable studies by Menz and Freeman (2003, 2004) elucidate

the underlying neural mechanisms. Menz and Freeman

estimated the disparity tuning curves of individual cells in

the cat striate cortex using the reverse correlation technique (for

a review, see Ringach and Shapley, 2004). This method yields

one tuning curve for each given delay between the stimulus

train and the spike train it elicits. Menz and Freeman calculated

the tuning curve for each delay between 0 and 200 ms in 5 ms

increments, and designated the tuning curve with the most

pronounced modulation (specifically, the largest root mean

squared signal strength) as the curve at the optimal delay

(Fig. 7). The relationship between the optimal delays on the one

hand and the firing rate on the other (e.g., whether the optimal

delay occurred before, during or after the onset transients) is

unclear, although this does not weaken the analysis itself.

For each given neuron, Menz and Freeman then examined

tuning curves 20 ms before and after the optimal delay, and

measured the changes in the disparity frequency (a measure of

disparity resolution) and in the disparity range (a measure of the

range of disparities that the cell responds to) as illustrated in

Fig. 7a. They found that, over the 40 ms time span centered on

the optimal delay, the disparity frequency narrowed for nearly

80% of the cells, and broadened for none. On the other hand, the

picture was somewhat more equivocal by the disparity range

measure: for about 38% of the cells, the disparity range

decreased, indicating a coarse-to-fine change. But for about 7%

of the cells, disparity range underwent an opposite, or fine-to-

coarse, change. Furthermore, some cells underwent a coarse-to-

fine change by one measure and a change in the opposite

direction by the other measure (see Fig. 3b of Menz and

Freeman, 2003), illustrating the complexity of the temporal

dynamic changes and the attendant challenges of characterizing

these changes. These trends were also generally true for the

other analyses of this data set carried out by Menz and Freeman

(2003, 2004); also see Ringach (2003).

3.4. Processing of other low-level image characteristics

3.4.1. Luminance and luminance contrast

Individual cells in the cat LGN can adjust their integration

time and gain to the local luminance and local contrast of the

stimulus (Mante et al., 2005). These adaptive changes in LGN

occur extremely rapidly, within a few tens of milliseconds,

unlike those described in Section 3.2, which take closer to

minutes or hours. Importantly, the gain control mechanisms for

luminance and for contrast operate largely independently of

each other. Mante et al. show that the two parameters are also

largely independent in natural stimuli, and therefore the gain

Fig. 7. Coarse-to-fine changes in disparity tuning. (a) Schematic illustration of changes in two different measures of disparity tuning. Either a decrease in the disparity

range (arrow on left) or an increase in disparity frequency (arrow on right) denotes a coarse-to-fine change in disparity tuning. The dashed vertical line denotes the

preferred disparity. (b) Coarse-to-fine changes in the disparity tuning of an actual complex cell in cat area 17 over a 40 ms period. The responses to individual disparity

stimuli (dots) were fitted with a disparity tuning curve (blue lines). The optimal delay for this cell was 65 ms (middle), when the modulation of the tuning curve was

most pronounced. The cell showed a 25% decrease in disparity range and a 71% increase in disparity frequency 20 ms after this time point relative to 20 ms before.

Panel (b) was redrawn from Menz and Freeman (2003) with permission. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of the article.)
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control mechanisms in LGN are well suited for processing

natural stimuli.

Albrecht et al. (2002) have reported that in the primary

visual cortex of both monkeys and cats, the contrast response

function of individual cells generally scales and shifts over

time. In fact, such scaling and shifting accounts for about 95%

of the response variance of a given cell. They also found that

key non-linearities that help adapt the neuronal responses to

changing stimulus conditions during natural vision, such as

contrast gain control and response expansion, are evident

within about 10 ms after the cell starts responding to the

stimulus (i.e., within a few tens of milliseconds after the

stimulus onset).

3.4.2. Orientation

There is some debate about whether orientation tuning in the

primary visual cortex follows a coarse-to-fine tuning pattern.

Ringach et al. (1997) studied the temporal dynamics of

orientation tuning of V1 cells in anesthetized monkeys using

the reverse correlation technique. They found that orientation

tuning first develops 30–45 ms after the stimulus onset, and

persists until 40–85 ms thereafter. The tuning generally

becomes sharper over time, and this coarse-to-fine change is

more pronounced for output layers (layers 2, 3, 4B, 5 or 6) than

for the layers that receive direct input from LGN (4Ca and

4Cb). Importantly, the observed temporal dynamic patterns

could not be accounted for by simple feed-forward inputs, but

can be readily accounted for by feedback circuits.

Many recent studies, using somewhat different experimental

paradigms and analytical techniques, have reported similar

findings (Ringach et al., 1997; Volgushev et al., 1995; Shapley

et al., 2003; Xing et al., 2005; also see Chen et al., 2005).

However, some other studies have reported that orientation

tuning remains largely unchanged over time (Celebrini et al.,

1993; Gillespie et al., 2001; Müller et al., 2001; Mazer et al.,

2002; Sharon and Grinvald, 2002). While the reasons for the

discrepancies between the two sets of studies is beyond the

scope of this review, it is worth noting that this debate, often

exemplary in its technical rigor, serves to highlight the

complexities of the temporal dynamic phenomena and the

problems of studying them.

3.4.3. Spatial frequency

The spatial frequency tuning of macaque V1 cells tends to be

generally broad at the start of response, and become shaper, i.e.,

more selective for specific spatial frequencies, over the course

of the next 100 ms or so (Bredfeldt and Ringach, 2002; Mazer

et al., 2002; Frazor et al., 2004). The preferred spatial frequency

tends to shift from low to higher frequencies over the course of

about a 100 ms so after the stimulus onset. In addition, the

response to low-spatial frequencies tends to be suppressed

below the background levels to a greater extent later in the

response. Spatial frequency tuning in the cat area 17 and area 18

shows a similar coarse-to-fine change (Frazor et al., 2004;

Nishimoto et al., 2005; Allen and Freeman, 2006).

Malone et al. (2007) have recently shown that this coarse-to-

fine temporal dynamic pattern could arise by temporal changes

in the receptive field size of V1 simple cells. In turn, such

patterns in V1 can arise from the observed patterns of center-

surround delay of individual LGN neurons and from convergent

input from multiple LGN cells with different receptive field

sizes and response latencies (Allen and Freeman, 2006).

The fact that the early vs. late responses in V1 are

dominated, respectively, by the low- vs. high-frequency

contents of the image does lend support to the spatial

frequency-based models of coarse-to-fine processing outlined

earlier (Section 2.7). However, many of the more specific issues

remain unresolved, including whether the time-course and the

magnitude of the changes in V1 can fully explain the dynamics

at the perceptual level (see, e.g., Malone et al., 2007).

3.5. Processing of shape characteristics

Hegdé and Van Essen (2004) examined the temporal

dynamics of shape coding in visual area V2 of awake, fixating

macaques using static 2D shape stimuli presented in the cell’s

CRF. The stimuli consisted of not only the conventional

oriented bars and sinusoids, but also more complex line stimuli

and non-Cartesian gratings that represent potential shape and

texture primitives (Fig. 8c–e; see Hegdé and Van Essen, 2004,

for details). They found that, during the response transients,

individual V2 cells are responsive to most shape stimuli (see,

e.g., Fig. 8c), so that the cell’s shape selectivity is rather broad,

or the sharpness of its shape ‘tuning’ is low, during this period

(Fig. 8b). After the transients, the response becomes sparser, in

that the cell responds well only to a few stimuli, and the

responses to the remaining stimuli decay to near-background

levels, so that the cell’s shape selectivity sharpens (Fig. 8d and

e). That is, sparsening effectively makes given cell’s responses

more explicitly selective to specific shapes. In addition to such

sparsening of the cell’s responses across the stimuli, responses

can also sparsen over time along other response dimensions,

including across the population (Box 3; also see Vinje and

Gallant, 2000, 2002). Thus, response sparsening appears to be a

widespread temporal dynamic phenomenon in the visual cortex

(also see Section 3.6, Box 3).

The above analysis solely considers the cell’s shape signal,

or the variation in the cell’s response from one stimulus to the

next. In this case, the cell’s signal varies in a coarse-to-fine

fashion over time. But a more complex picture emerges when

one takes into account the response noise, or the random

variation in the cell’s response to the same given stimulus from

one trial to the next. Hegdé and Van Essen found that the signal-

to-noise ratio, which is a measure of the amount of shape

information conveyed by a given cell, follows a roughly

opposite pattern as the aforementioned tuning sharpness

measure, in that the ratio is maximal during the transients

and decays thereafter. Importantly, while the signal-to-noise

ratio decreases substantially after the transients, it nonetheless

remains statistically significant throughout the remainder of the

response, up to at least 300 ms after the stimulus onset.

The fact that initial transients are the most informative phase

of a cell’s response is somewhat surprising, since neurons tend

to respond well to most stimuli during this period (see, e.g.,
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Fig. 8c). Since the information conveyed by a given cell

depends on the extent to which its responses vary from one

stimulus to the next, it would therefore appear that these

unselective responses are less informative during the transients.

But, as first pointed out by Müller et al. (2001), the reason why

the information conveyed by the cell is maximal during the

transients is that the noise is much lower relative to the signal.

While both the signal and the noise decay after the transients,

the signal decays somewhat faster than the noise, thus

decreasing the signal-to-noise ratio (Hegdé and Van Essen,

2004, 2006). In other words, because of this complex interplay

between the signal and noise, the apparently contradictory

pictures of shape selectivity emerge depending on whether one

considers the signal alone, or both the signal and the noise.

At the population level, responses in V2 show a different

type of coarse-to-fine change over time. During the transient

response, the V2 population response is largely correlated or

redundant, in that three different groups of stimuli (color-coded

as red, green or blue stimulus clusters in Fig. 9) elicit different

population responses. That is, during this period, most V2 cells

tend to respond similarly to all the stimuli within each stimulus

cluster, but differently from one cluster to the next. Thus, the

population response during the transients is better able to

categorize the stimuli into broad groups, rather than distinguish

among the individual stimuli. After the transients, the

population response gradually decorrelates, so that the cell-

to-cell variation in the response pattern increases. Since

different cells tend to have different response patterns at this

stage, the population as a whole is better able to distinguish

between individual stimuli, including within the grating

stimulus group or either line stimulus group. Thus, the post-

transient population response carries finer-grained information

about individual stimuli. Although there are many plausible

mechanisms by which the population response may decorr-

elate, the actual mechanism appears to be a differential

decrease in, or a sparsening of, the responses across different

Fig. 8. Temporal changes in 2D shape selectivity of a neuron in macaque V2. (a) Temporal dynamics of the firing rate. Static 2D texture and shape primitives (shown

in panels (c–e)) were presented within the cell’s CRF for 300 ms (thick black horizontal line in panel (a)). Each line of dots in panel a represents the spikes fired by the

neuron during a 600 ms interval spanning the given presentation of a given stimulus. The blue line represents the peristimulus time histogram. As is typical for visual

cortical cells presented with a static stimulus, the cell initially responds with brief period of brisk firing (‘onset transient’) followed by a more sustained, but lower,

firing rate. The arrowhead denotes the off-response. (b) Temporal dynamics of two different metrics of the cell’s shape selectivity. Note that the Tuning Sharpness (left

axis) shows a coarse-to-fine temporal pattern, whereas the signal-to-noise ratio (right axis) shows a roughly opposite pattern over this time range. Measures of

sparseness (not shown) follow the same general temporal pattern as Tuning Sharpness. (c–e) Responses of the cell to the various shape stimuli during the transient

(panel (c)) and at two different time bins after the transient (panels (d and e)). The responses are color-coded in a heat map format according to the color scale at

bottom. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
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cells and stimuli (see Box 3; see Hegdé and Van Essen, 2004,

2006, for details).

This overall response pattern of V2 cells to 2D shape stimuli,

both at the level of individual cells and of the population, has

also been reported for 2D shape stimuli in macaque V4 and V1,

and for 3D stereo stimuli in V4 (Hegdé and Van Essen, 2006).

In addition, comparable response patterns have been reported

for face stimuli in the macaque IT (Sugase et al., 1999;

Matsumoto et al., 2005; also see Section 3.7). Therefore, the

aforementioned distinction between the responses during vs.

after the transients appears to be widespread in the visual

cortex, both at the level of individual cells and of the

population.

Brincat and Connor (2006) studied the temporal dynamics of

shape selectivity in macaque posterior IT. They used relatively

simple straight and curved line stimuli (such as arcs, angles,

etc., at various curvatures and orientations, etc.), and various

multipart complex stimuli created by appropriately combining

the simple stimuli, such as two arcs overlaid on each other to

make a more complex shape. They explored whether or not the

response to the complex shapes could be explained as simple

weighted sum of the corresponding simple stimuli, i.e., whether

response to a given complex stimulus was a linear function of

the responses to its building blocks or not. The former scenario

represents a linear response, and the latter represents a non-

linear response. Across IT cells they studied, the linear response

strength reached 90% of maximum at about 120 ms after the

stimulus onset, whereas the non-linear response evolved later,

reaching 90% of maximum at about 184 ms after the stimulus

onset. Using computer simulations, they showed the gradual

linear-to-non-linear transformation can be explained by a

recurrent input from neurons within IT with dissimilar

selectivity patterns. Putative feedback connections from higher

areas alone were not sufficient to produce this pattern; putative

lateral (or local) connections within IT had to be taken into

account. This suggests that the response of IT neurons to a

given complex shape stimulus evolves over time by means of a

recurrent network that in effect compares the response of many

individual IT cells to the building blocks of the given complex

shape.

3.6. Temporal dynamics of center-surround modulation

A large majority of temporal dynamic studies at the neuronal

level have focused on the responses to stimuli presented within

the CRF. But understanding the temporal dynamics of the

nCRF is important because, after all, it too receives visual

stimulation and contributes to the percept under natural viewing

conditions. The temporal dynamics studies of nCRF have

focused largely on early- to intermediate-level visual areas such

as V1, V2, and V4, where nCRFs are manageable in size.

Particularly noteworthy among these studies are those that deal

with the temporal dynamics of scene segmentation and

response sparsening.

Border ownership is a prototypical scene segmentation

effect. When an oriented edge is presented in the CRF of a V4

neuron, in many cases the neuron is more responsive to the edge

if the edge is a part of a larger figure, such as a closed

rectangular surface, with the other three edges located in the

nCRF (Zhou et al., 2000). The cell typically responds less if the

edges do not form a closed rectangle, even when the edge

located in the CRF is the same. Thus, the nCRF can convey

information about whether the given edge (or border) belongs

to the figure or the background. Such ‘border ownership’ effects

are also evident, although progressively less pronounced, in V2

and V1.

Fig. 9. Coarse-to-fine changes in the V2 population response. Panels (a) and (b) denote the population response during and after the onset transients, respectively, as

visualized by multi-dimensional scaling (MDS). MDS plots the stimuli so that the stimuli that elicit similar responses from one V2 cell to the next are clustered

together, and the stimuli that elicit dissimilar responses from different cells are dispersed correspondingly father apart. During the transient responses in V2 (40–60 ms

time window, panel (a)), three such response patterns are evident, as denoted by the corresponding stimulus clusters, color-coded in this figure in red, green and blue.

The clustering in panel a means that most V2 cells responded similarly to the stimuli within each given cluster, and the responses of the cells tended to change

collectively from one cluster to the next. This means that the population response was effective in distinguishing among the stimuli that belonged to different clusters,

but less effective in distinguishing among the stimuli that belonged to the same cluster. This is a form of efficient coding, the visual system only need sample the

responses of very few cells to extract most of the information. After the transients (280–300 ms time window, panel (b)), the response patterns diverged (or

decorrelated) from one cell to the next, so that the within-cluster vs. across-cluster distinction became blurred. This means that the population response was better able

to distinguish among the various stimuli, regardless of whether they belonged to the same or different clusters. Reproduced from Hegdé and Van Essen (2004) with

permission. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
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This phenomenon has a revealing temporal component: the

distinction between the figure vs. ground is not evident during

the initial response transients, but emerges afterwards. That is,

the figure-ground distinction is not apparent during the initial,

feed-forward sweep of cortical processing, but emerges with

successive passes mediated by recurrent processing (Zhou

et al., 2000; Lamme and Roelfsema, 2000; also see Roelfsema

et al., 2004; Roelfsema, 2006).

Related scene segmentation effects mediated by nCRF, such

as relative depth, da Vinci stereopsis, and texture segmentation,

also have comparable temporal dynamics (for reviews, see

Roelfsema et al., 2004; Lee and Yuilee, 2006; Roelfsema, 2006;

Scholte et al., 2006). In case of texture segmentation in V1,

there is also some evidence that figure vs. ground differential

activity of individual neurons reflects the figure-ground percept

itself, and not just the corresponding physical configuration of

the stimulus. Moreover, this activity appears to be mediated by

feedback connections from other areas, rather than by lateral

connections with neighboring cells from within V1 (Supèr

et al., 2001; also see Scholte et al., 2006).

Many of the above studies do not explicitly take into account

response noise (and, in some cases, cell-to-cell response

variation). Therefore, it remains possible that the figure vs.

ground differential effects will be apparent even during the

response transients when the noise is taken into account (cf .

Section 3.5). This possibility notwithstanding, there is little

doubt that recurrent processing mediated by nCRF plays a key

role in scene segmentation.

Another nCRF-mediated phenomenon involving recurrent

processing is that of response sparsening. Vinje and Gallant

(2000, 2002) have shown that when natural stimuli are presented

to both the CRF and the nCRF of V1 cells, the responses become

sparser (i.e., more selective for certain stimuli) as the total size of

the stimulus gets larger, i.e., as more of the nCRF is stimulated.

This sparsening tends to become more pronounced over a period

of a few seconds. Many different information theoretic measures

of the cell’s response, including entropy, show this overall trend.

Vinje and Gallant also show that entropy increases over the

course of stimulation due to a differential increase in total

entropy relative to noise entropy. The precise nature of the

interplay between feed-forward and recurrent processing that

results in response sparsening, however, is largely unclear (but

see Chen et al., 2005; Smith et al., 2006).

Barlow (1994) has proposed that a key function of the

center-surround modulation is to spatially decorrelate the

neuronal responses. Indeed, Barlow argues that a chief task of

the neocortex is to remove the correlations in the sensory input

‘‘that has already been identified through past experience’’ (p.

20), and that neocortical areas, specifically the center-surround

interactions therein, have evolved to accomplish this. Of

course, the latter hypothesis is far harder to test experimentally,

and neither hypothesis seems to have been tested so far.

3.7. Face processing in the macaque IT

Responses of face-selective neurons in the macaque IT also

show a coarse-to-fine temporal progression at the level of

individual cells and of the population. Sugase et al. (1999)

examined the time course of face representation by individual

IT cells in awake, fixating macaques. Their stimulus set

consisted of 38 stimuli, made up of 3 different human faces

with 4 different expressions each, 4 different monkey faces

with 4 different expressions each, and 10 different geometric

shapes. A representative subset of these stimuli is shown in

Fig. 10 (inset). The three stimulus types (human faces,

monkey faces, and geometric stimuli) constituted the global

categories, and the four fine categories comprised of human

identity, human facial expression, monkey identity, and

monkey facial expression. The authors presented the stimuli

for 350 ms, and measured the information transmission rate

for the global- and fine categories during each given 50 ms

sliding window between 50 and 500 ms. They found that the

responses during the transients conveyed significant informa-

tion about the global categories, whereas the information

about the fine categories evolved an average of 51 ms later,

during the post-transient sustained response. Thus, the post-

transient responses conveyed significant information both

about global and fine categories, whereas the transient

responses conveyed significant information only about the

global categories.

This global-to-local change was evident in a relatively small

subset of IT neurons. Of the 1874 IT neurons studied by the

authors, only 158 (8%) were selective for face stimuli, of which

86 neurons were further studied. Of these 86 neurons, 32 (37%,

or 1.7% of the IT neurons examined) showed the global-to-local

effect. This is notable for two reasons. First, comparable global-

to-local effects in shape processing in the lower visual areas

such as V1, V2 and V4 have been found at the population level,

but these effects are not evident at the level of single cells, at

least as measured by the signal-to-noise ratio (Hegdé and Van

Essen, 2004, 2006). But these studies examined all the cells

encountered, and did not select cells on the basis of stimulus

selectivity, as Sugase et al. (1999) did. Thus, it remains possible

that similar effects exist in V1, V2 and/or V4 for at least some

shape stimuli. Second, if the global-to-local effect is relatively

rare in IT, is it enough for the brain to use it in face recognition

tasks?

A recent study by Hung et al. (2005) suggests that it is. They

recorded the responses of macaque IT cells to 77 objects that

belonged to one of eight categories (human and monkey faces,

foods, toys, etc.). They then devised a linear classification

algorithm that classifies statistical patterns in the responses, and

trained it to learn the object categories and identities from the

neuronal responses. They found that the classifier could reliably

classify and identify the objects using the responses from as few

as �100 randomly selected IT neurons and using response

durations as brief as 12.5 ms. Thus, information about both

object category and object identity is widespread in IT but, in

any event, only a tiny fraction of the IT cells need be sampled in

principle for a small time interval for either task (also see

Keysers et al., 2001; Matsumoto et al., 2005). The results were

similar regardless of whether the classifier used multi-unit

activity, single-unit activity, or local field potentials for the

tasks.
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Three additional results from this study (Hung et al., 2005)

serve to highlight the complexities of studying coarse-to-fine

representation at the level of single cells. First, neuronal

responses as early as 125 ms after the stimulus onset contained

enough information to perform both the categorization and the

identification tasks. This may be because the algorithm of

Hung et al. took into account both the signal and the noise. As

noted earlier (Sections 3.5 and 3.6), analyses that take noise

into account can produce results different from those that

discount noise. Second, the information available for the

categorization vs. identification tasks had very similar time

courses. Thus, across many cells, there was no evidence that

the category (or global) information developed earlier than

local (identification) information. Third, during the 12.5 ms

time bin starting at 125 ms, IT cells fire 0–2 spikes per second

on average, or 0.18 � 0.26 (mean � S.D.) spikes/bin. But the

classifier performs at about 70% correct using this bin,

indicating that individual spikes can be sufficient to carry

meaningful object information even in higher visual areas (also

see Box 1).

3.8. Face processing: insights from microstimulation

While the above results collectively suggest that the global-

to-local temporal dynamic variation could, in principle,

mediate the corresponding changes at the perceptual level,

they do not by themselves establish such a causal link. But a

recent study by Afraz et al. (2006) provides precisely such a

link (also see DiCarlo, 2006).

In essence, Afraz et al. show that altering the activity of

small clusters of macaque IT cells using microstimulation

during vs. after the response transients has the corresponding

expected effects at the perceptual level. As its name implies,

microstimulation alters the activity of a localized cluster of

neurons (typically in a region several hundred microns across)

by passing a brief pulse (50 ms long in case of Afraz et al.,

2006) of external current using a microelectrode (see Tehovnik

et al., 2006, for a review). Depending on the parameters,

microstimulation can activate or disrupt the collective activity

of the target clusters. Afraz et al. activated small, selected

clusters of IT neurons while the monkey categorized noisy

visual stimuli (presented for 54 ms) as faces or non-faces. They

found that monkeys tended to classify the stimuli as faces when

face-selective neuronal clusters were stimulated, but not when

non-face-selective clusters were. The magnitude of this biasing

effect depended on the degree of face selectivity of the

stimulation site (i.e., neuronal cluster), and the size of the

stimulated cluster. More importantly in the present context, the

timing of the stimulation made a big difference. Microstimula-

tion 0–50 ms after the stimulus onset, which is largely before

the onset of IT responses (Bruce et al., 1981), made little

difference in the behavior of the monkeys. But when the face-

selective neurons were microstimulated 50–100 ms after the

stimulus onset (i.e., approximately during the response

transients), during which face-selective IT neurons mostly

convey information about global categories (see above; also see

Bruce et al., 1981; Sugase et al., 1999; Kiani et al., 2005), the

monkeys’ behavioral responses were significantly biased

Fig. 10. Coarse-to-fine tuning of shape categories in the macaque IT. The stimulus set consisted of 38 stimuli, a few of which are shown in the inset. The global shape

categories consisted of human faces, monkey faces, and geometric shapes (inset, vertical axis). The fine categories (inset, horizontal axis) consisted of the various

facial identities and expressions. Four fine categories were defined: human identity, human expression, monkey identity, and monkey expression. Fine categories were

not defined for geometric shapes (inset, bottom row). The plots show the cumulative information transmission rate of 32 IT neurons that conveyed information about

both the global and fine categories (red and blue, respectively). The thick horizontal line denotes the stimulus duration. Adapted from Sugase et al. (1999) with

permission. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
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toward categorizing the stimuli as faces. On the other hand,

stimulating the same neurons 100–150 ms after the stimulus

onset, during which the neurons convey both global and local

information about faces (Sugase et al., 1999), resulted in a face

response bias in one monkey but not the other.

It is important to note that Afraz et al. only addressed the

global level categorization task (i.e., face vs. non-faces) and not

a finer level task, such as recognizing facial identity or

expression. In this sense, this study does not address the coarse-

to-fine processing of face information, but only the temporal

dynamics of the coarse-scale task of face detection. None-

theless, this study is notable both because it is one of the

clearest accounts of the temporal changes at the perceptual

level in non-human species, and because it compellingly

demonstrates the usefulness of the microstimulation technique

in establishing a causal link between the temporal dynamics of

the behavioral response and of the underlying neural activity

(cf . Section 2.4).

3.9. Temporal dynamic changes in the dorsal pathway

The dorsal visual pathway (see Figs. 3 and 6) is sometimes

referred to as the ‘where?’ pathway or the action pathway,

because it is thought to specialize in processing information

about the spatial location of visual objects and mediating

visually guided action (Ungerleider and Pasternak, 2004;

Goodale and Westwood, 2004). Since visually guided action

must happen in real time, information about visually guided

action may not evolve over time in the dorsal pathway (Goodale

and Milner, 1992; Goodale and Westwood, 2004) as shape

information clearly does in the ventral pathway. However, it is

increasingly clear that the processing in the dorsal pathway is

not limited to spatial processing. Areas in the dorsal pathway

represent shape information and visual category information,

although perhaps at a much more coarse-grained level

(Freedman and Assad, 2006; Lehky and Sereno, 2007; also

see Schoenfeld et al., 2003; Goodale and Westwood, 2004).

While not much is known about the temporal dynamics of

shape information in the dorsal pathway, there are hints of

important similarities and differences with the temporal

dynamics of the ventral pathway. Pack and Born (2001)

studied the response of macaque MT (middle temporal area)

cells using a pattern of line segments drifting coherently such

that the direction of the local motion components differed by

458 from the direction of global motion. That is, the parts

collectively moved in a different direction than the whole. The

neuronal responses were initially strongly biased by the

component directions, but evolved over the course of the next

80 ms or so to represent the direction of global motion. Note,

incidentally, that one can reasonably consider this an instance

of local-to-global (or fine-to-coarse) change in direction

selectivity—an issue we will revisit below in the context

examining whether coarse-to-fine processing is a common

theme of visual processing (Section 6).

Smith et al. (2005) used moving plaid stimuli in which

directions of component- and global pattern motion were

readily separable. They reported that for many MT cells, the

responses initially represent the direction of component (local)

motion, but evolve over 100–150 ms after the stimulus onset to

represent the direction of the global pattern motion.

Palanca and DeAngelis (2003) measured the disparity

selectivity of macaque MT neurons using static and moving

disparity stimuli and compared the time course of disparity

selectivity in the two cases. For static stimuli, they found that

the disparity selectivity peaks around the time of initial

response transient, and decreases to a lower asymptotic level

afterward, much like the disparity selectivity in V4 (Hegdé and

Van Essen, 2006) and the selectivity for many other static shape

stimuli as described above (Section 3.5). But Palanca and

DeAngelis found that for moving stimuli, disparity selectivity

in MT does not show the post-transient decay, but instead

remains relatively high throughout the stimulus presentation.

The lack of response decay for motion stimuli may simply

reflect steady motion energy flux throughout the stimulus

duration (Hegdé and Van Essen, 2006).

The extent to which the dichotomy of response patterns for

static vs. moving stimuli is widespread in the dorsal pathway –

or, for that matter, in the ventral pathway – remains to be

determined. Nonetheless, the scenario where tuning property of

a given neuron changes for static stimuli and not for moving

stimuli has a potentially important computational consequence.

Many perceptual judgments about moving stimuli are

explained well by models in which the visual system

straightforwardly integrates the sensory information until a

decision threshold is reached (see, e.g., Palmer et al., 2005).

The value of the decision threshold depends on the tradeoff

between the speed vs. accuracy of decisions. However, if the

amount and the nature of information conveyed by the neurons

itself changes, decision-making will have to account for these

factors as well. How the system accomplishes this is unclear.

3.9.1. Neuronal temporal dynamics in the Bayesian

framework

Little is empirically known about the neural mechanisms of

vision as Bayesian inference and even less about visual

temporal dynamics in a Bayesian framework. But it is worth

noting that computational and modeling studies show that

Bayesian inference can be straightforwardly implemented in

terms of the previously known (or postulated) mechanisms of

neural coding (Glimcher, 2005; Doya et al., 2006). Essentially,

this means that probability distributions on which the visual

system must base its inference can be coded rather faithfully at

the level of the neuronal population. In this sense, the plausible

Bayesian explanations are similar to those at the perceptual

level outlined above—the neural population essentially acts as

the observer. The whole brain imaging results described in

Section 4 below can also be conceptualized in the same fashion

using the Bayesian framework.

3.10. Summary of single-unit studies

Many response characteristics of visual neurons tend to be

different during vs. after the onset transients. Many, but by no

means all, response characteristics of individual neurons and
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neuronal populations tend to change in a coarse-to-fine manner

over the course of the response. In some cases, whether or not a

given response characteristic appears to be processed in a

coarse-to-fine fashion depends on the analytical method, e.g.,

on whether response noise was taken into account. It is unclear

whether the many apparent coarse-to-fine processing phenom-

ena are superficially similar or are fundamentally related.

Nonetheless, coarse-to-fine processing may be a prevalent,

although not universal, temporal dynamic theme in many visual

areas. Microstimulation studies show that, at least in case of

face processing in IT, the temporal dynamics of the neural

responses may have a causal relationship with the correspond-

ing changes at the perceptual level. Response sparsening, likely

due to recurrent processing, appears to be an important and

widespread mechanism of sharpening the response selectivity

both of individual neurons and of neuronal populations.

4. Spatial aspects of temporal dynamics: insights from

whole brain imaging studies

4.1. A brief overview of whole brain imaging techniques

While single-unit studies offer unmatched spatial and

temporal resolution, they, by practical necessity, tend to focus

on one area at time and typically on one neuron at a time. Thus,

it can be hard to see the forest for trees from these studies.

The advantage of whole brain imaging techniques is that

they offer a comprehensive view of the forest, are typically non-

invasive, and can be carried out using human subjects that can

readily perform complicated tasks and report semantically

nuanced percepts. On the other hand, whole brain imaging

techniques have their own sobering limitations. EEG, the least

expensive of the whole brain imaging methods, offers

millisecond-level temporal resolution, but the spatial resolution

of the ERPs is poor for signal sources on the surface of the

brain, and progressively poorer at deeper levels (see Andreassi,

2006; Luck, 2005, 2006). Magnetoencephalography (MEG)

signals are referred to as event-related magnetic fields (ERMFs)

or, in case of visual stimuli, visually evoked fields (VEFs).

ERMFs are comparable to ERPs in terms of temporal resolution

but have a decidedly greater spatial resolution (for reviews, see

Hämäläinen et al., 1993; Andreassi, 2006). Moreover, MEG is

sensitive to only a subset of the neural activity that can be

detected by EEG (Hämäläinen et al., 1993; Andreassi, 2006).

The spatial resolution of the fMRI signal, or the blood

oxygenation level-dependent (BOLD) response, tends to be on

the order of a millimeter or so, and is better than ERPs or

ERMFs in this respect. But with a typical temporal resolution

of a few seconds (Jasanoff, 2005), BOLD signal would

seem almost ideally unsuited for studying millisecond-level

temporal dynamic phenomena. Nonetheless, as we will see

below, much has been learned by judiciously combining the

various whole brain imaging techniques with each other and

relating the results with psychophysical and single-unit studies

(see Logothetis et al., 2001; Bar et al., 2006; Schmid et al.,

2006).

4.2. Visualizing visual processing

The aforementioned ERP study of ultra-rapid visual

processing by Thorpe et al. (1996) is notable for another

reason. This study represented one of the clearest early

demonstrations of the utility of methods like EEG in visualizing

the spatiotemporal pattern of visual processing. It provided

what in effect are time-lapse pictures of the ERPs sweeping

through the brain over a 400 ms period, somewhat like a

‘standing wave’ in a sports arena (see Fig. 2a and b of Thorpe

et al., 1996). Of course, such ERP ‘maps’ cannot be directly

interpreted as brain activity maps, given the uncertainties

involved in assigning the ERPs at a given surface location to a

given source location in the brain (Andreassi, 2006; Luck,

2005, 2006). But even with this caveat, the original study by

Thorpe et al. (1996), and many subsequent ones like it (e.g.,

Johnson and Olshausen, 2003, 2005a), provide revealing

spatiotemporal views of visual processing.

4.3. Spatiotemporal patterns of response persistence

As the retinal image changes, how does the activity in

different parts of the brain change with it? Mukamel et al.

(2004) presented human subjects with stimuli of various visual

objects, such as animals, houses, faces, etc., at either 4 Hz or

1 Hz, and studied the time course of the BOLD response in

various visual areas at the two presentation rates. They found

that the four-fold increase in the presentation rate (from 1 to

4 Hz) results in a two-fold (200%) increase in the BOLD

response in the early visual areas and the motion sensitive area

MT/V5, but only resulted in a 25% response increase in higher

visual areas, such as those in the fusiform gyrus. Mukamel et al.

suggest that a likely explanation for this phenomenon is that the

stimulation effects persist longer in the higher visual areas and

decay rapidly in lower visual areas. That is, temporal dynamics

of the response is more image-dependent in the lower visual

areas and less so in the higher areas. While other studies support

this notion, they also find that the temporal dynamic patterns of

the BOLD response vary a good deal depending on the

stimulus, imaging technique, attentional control, task and other

behavioral parameters (Kourtzi and Huberle, 2005; Carlson

et al., 2006; Philiastides et al., 2006).

Because relationship between the neuronal responses and

the BOLD responses may, in principle, vary depending on the

area, these results cannot necessarily be taken as proof that the

stimulus-driven effects persist longer in higher visual areas than

in lower, retinotopic areas. Nonetheless, it is worth noting that

these results are consistent with results obtained in other whole

brain imaging and assorted monkey neurophysiological studies

(Rolls and Tovee, 1994; Rolls, 2004; Keysers et al., 2001;

Kourtzi and Huberle, 2005; Carlson et al., 2006). Thus, it seems

reasonable to conclude that the stimulus-driven effects are more

transient in early visual areas than in higher visual areas. This is

important, among other things because the fact that the visual

information persists longer in higher visual areas provides a

potential explanation for why processing duration is more

important than the stimulus duration in backward masking
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experiments (see Section 2.1). In other words, the persistent

activations might serve as a short-term (iconic) memory

mechanism for preserving a trace of the stimulus even in its

absence (Mukamel et al., 2004).

4.3.1. Responses of object-selective regions during object

recognition

Grill-Spector et al. (2000) have shown that the BOLD

responses of the object-selective human brain regions are

correlated with the performance of the subjects in correctly

categorizing objects at a basic level (e.g., ‘flower’, ‘boat’). As

expected, subjects recognized all objects correctly at a

processing duration of 500 ms. Subjects performed nearly as

well when the duration was 120 ms. But when the duration was

reduced to 40 ms, the subjects performed at an average of 18%

correct, and when the duration was reduced 20 ms, the

performance was near zero. Thus, the performance was a highly

non-linear function of the processing duration. Notably, the

BOLD response in high-level object-selective regions, includ-

ing LOC and DF, paralleled the performance of the subjects. By

contrast, the BOLD response in V1 was much less sensitive to

the performance or the processing duration. Moreover, after the

subjects received training resulting in an enhanced perfor-

mance, the LOC responses increased accordingly. In addition,

LOC responses were larger for trained than for novel stimuli.

Thus, the response patterns of LOC and other high-level

regions, but not the response patterns of lower retinotopic

regions such as V1, reflected object recognition.

4.4. Spatiotemporal dynamics of face processing

Liu et al. (2002) used MEG to examine the spatiotemporal

patterns of face processing in human subjects. They found

bilateral regions in the occipitotemporal cortex that were

significantly more responsive to faces than to houses 100 ms

after the stimulus onset (M100). They also found a different

bilateral ERMF pattern that peaked 170 ms after the stimulus

onset (M170). The regions of activation of the M100 vs. the

M170 had distinct, albeit overlapping, spatial locations.

Moreover, the M100 response was associated with correct

categorization of stimuli as faces, but not with successful

identification of individual faces. M170 was associated with

both. Taken together, these MEG results reaffirm the notion that

face processing proceeds in a coarse-to-fine fashion: initial face

categorization, followed by face identification.

It is important to note that although these results are

manifestly similar to those in macaque IT (Section 3.7), the two

sets of results are not directly comparable, for two reasons.

First, it is unclear whether the region of activation for either

M100 or M170 in humans is homologous (in the phylogenetic

sense), or even functionally analogous, to macaque IT. Second,

the fact that categorization responses in both cases have a

latency of 100 ms does not mean that the two brain regions are

functionally analogous, since cortical response latencies are

generally shorter in macaques than in humans (Section 3.1).

Similarly, although the M170 ERMF and the N170 ERP in

humans both have the same latencies and are both selective for

face identity (but see Rousselet et al., 2004), there is no a priori

reason to believe that they represent the same underlying

neuronal response (Liu et al., 2002).

4.5. Imaging studies of spatial frequency-based coarse-to-

fine processing

As noted in Section 2.7, many models of coarse-to-fine

processing postulate that the visual system first extracts a low-

spatial frequency-based ‘gist’ of the scene, and is followed

more slowly by the higher spatial frequency content, which

provides finer-grained spatial information. The coarse grained

information is used to constrain the interpretation of the

information on a finer spatial scale (Fig. 5; Bar, 2003, 2004;

Peyrin et al., 2005). Previous fMRI studies have shown that the

object-selective regions in the temporal cortex and, somewhat

unexpectedly, the regions in the orbitofrontal cortex (OFC) are

preferentially activated when a given object is recognized

compared to when the same object is not recognized (Bar et al.,

2001).

In a more recent study, Bar et al. (2006) used a combination

of fMRI and MEG to compare the time courses of the MEG

responses in the OFC and the fusiform gyrus during trials in

which subjects reported recognizing vs. not recognizing a given

set of line drawing objects. They found that differential

responses to recognized vs. unrecognized stimuli peaked in the

left OFC 130 ms after the stimulus onset, 50 ms before it

peaked in the fusiform gyrus. But is the response in OFC

correlated with the low-spatial frequency content of the image,

as the Bar (2004) model predicts?

To test this, Bar et al. compared the response magnitude for

low-pass vs. high-pass images of real-world objects since, for

technical reasons, it is hard to directly compare response

polarity (i.e., activation vs. deactivation) using MEG (Bar et al.,

2006, p. 452). They found that the responses to both sets of

stimuli were suppressed below the baseline levels (i.e., were

negative) in OFC, but the response to the high-pass stimuli were

more suppressed. Moreover, the suppression was comparable

for low-pass vs. intact, unfiltered images. The significance of

this response polarity (i.e., suppression) is unclear, but Bar et al.

(2006) point out that the differences in the response magnitudes

does mean that the ‘‘early OFC activity is differentially

sensitive to spatial frequencies’’ (p. 452). They also show that

MEG responses covaried among OFC, fusiform gyrus and the

early visual areas, and this covariance, or phase synchrony, was

stronger for low-pass images, suggesting that the connectivity

between the three sets of brain regions is stronger for low-pass

images.

While these results are consistent with the Bar model, it is

important to note that many key features of the model remain

untested. These include, but are not limited to, the issue of

whether or not what OFC generates are image interpretations

per se, whether the function of the fusiform gyrus depends on

the input from the OFC, and whether the apparent rapid

extraction of the low-frequency information is mediated by the

dorsal pathway as the Bar model posits. Moreover, it is also

unclear the extent to which these effects depend on the stimuli
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used, to the spatial frequency contents of the stimuli, and to the

methods used to determine response latencies.

The overall strength of the Bar model is that it highlights the

importance of recurrent processing in constraining the

interpretation of the bottom–up information. But the model

also has its weaknesses, two of which must be noted here. First,

it is unclear whether the low-frequency images used by Bar

et al. (2006), for instance had the same overall luminance

energy as the high-frequency images. Roughly speaking, this

means that the image pixels may have been brighter (or, less

likely, darker) on average in low-frequency images than in their

high-frequency counterparts. If true, this potentially serious

confound may have contributed to the differential responses to

the two sets of images. Second, the model posits that the

‘‘dorsal magnocellular pathway’’ mediates the rapid arrival of

the low-frequency information to the prefrontal cortex (see,

e.g., Bar et al., 2006, p. 449). This is erroneous on many counts.

(i) The notion that the dorsal pathway is a predominantly

magnocellular pathway may be widespread, but it is untrue

(Callaway, 2005; Sincich and Horton, 2005). (ii) The notion

that the magnocellular pathway selectively carries low-spatial

frequency information is also untrue (Kaplan, 2004, p. 484).

(iii) Although magnocellular responses are somewhat faster

than parvocellular responses in some respects, it is far from

clear that magnocellular neurons respond faster than parvo-

cellular neurons to lower spatial frequencies (Merigan and

Maunsell, 1993, pp. 372–374; Kaplan, 2004). Together, these

considerations call into question whether and to what extent the

observed faster prefrontal responses are attributable to low-

frequency information.

4.5.1. Evidence for lateralization of spatial frequency

processing

The aforementioned preferential responses in the left OFC to

low-pass images is one of the many findings that suggest that

there is some hemispheric asymmetry in the coarse-to-fine

processing of spatial frequency. Peyrin et al. (2005) investi-

gated this by measuring the BOLD responses using sequences

of bandpass images that progressed systematically from low-

pass to high-pass, or vice versa. They found preferential

responsiveness to the high-pass to low-pass sequence in the left

occipitotemporal cortex, and to the opposite sequence (i.e.,

low-pass to high-pass) in the right occipitotemporal cortex.

They interpret this to mean that the left and the right

hemispheres are preferentially engaged in fine-to-coarse and

coarse-to-fine processing, respectively, of the image (cf . Iidaka

et al., 2004). More recently, Peyrin et al. (2006) have shown that

while this pattern holds for short stimulus durations (30 ms), for

longer durations (150 ms), the right hemisphere tends to show

greater activation regardless of the spatial frequency content of

the stimulus, suggesting that the pattern of hemispheric

lateralization changes over the course of about a 100 ms.

While resolving the lateralization issue is important to

understanding the functional organization of spatial frequency

processing, it is unclear whether the lateralization per se has

any computational consequences. For instance, it remains

possible that the differential brain responses to low- vs. high-

spatial frequencies are simply a reflection of where the brain

processes spatial frequency information, and do not have

significant computational consequences. There are other

sobering instances of structure without function in the visual

system (Horton and Adams, 2005).

4.6. Analyses of functional and effective connectivities

One of the noteworthy insights to emerge from recent

imaging studies is that different brain regions show similar

temporal patterns of activity during a given task. Briefly, two

brain regions are said to be functionally connected when the

responses in the two regions are mutually correlated in time (for

reviews, see Friston, 1994; Penny et al., 2004; B. Horwitz et al.,

2005). Of course, if the two regions are selected in the first place

because their responses match a third, pre-specified temporal

pattern (e.g., a box car function), then the activity in the two

regions can be expected to be correlated. But this does not

necessarily mean that the two regions are causally related, i.e.,

the response of one region causes, or is caused by, the response

of the other. Two regions are said to be effectively connected

when their responses are causally related. This means that there

is a path connecting the two regions. The connectivity analyses

can be carried out using any time-varying neural response data,

regardless of the method by which the data are collected,

although connectivity studies commonly use BOLD response

data.

A recent study by Summerfield et al. (2006) illustrates the

current state of the technique. During each given block of the

scan, subjects were shown low-contrast, ambiguous pictures of

faces, houses and cars in random order, and were required to

classify the stimuli in one of two ways depending on the block.

During ‘face block’, the subjects had to classify each given

stimulus as a face or non-face. During the ‘house block’,

subjects had to classify similar stimuli as houses or non-houses.

Car stimuli, which did not have a block of their own, served as

control stimuli. Regions in inferior occipital gyrus (IOG),

fusiform face area (FFA), temporo-parietal junction (TP), and

amygdala were more responsive to the face stimuli than to the

house stimuli, regardless of the block. The responses were

larger during the face block than during the house block in

dorsal and ventral medial frontal cortex (dMFC and vMFC,

respectively), regardless of the physical stimuli. That is, the

activity in MFC reflected the predicted percept (depending on

whether it was a face- or a house block).

To test whether MFC instructs the face-selective regions

what stimulus type to expect depending on the block,

Summerfield et al. used a type of connectivity analysis called

dynamic causal modeling (DCM). DCM estimates how much

of the hemodynamic activity in a given brain region can

be accounted for by the stimulus input, experimental

parameters (e.g., face stimulus and face block), and the

known anatomical interconnectivity between the relevant

regions. The analysis found that upon the presentation of face

stimuli, feed-forward connections from IOG to FFA and

amygdala were selectively enhanced. During the face blocks,

feedback connection from vMFC to FFA and amygdala were
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selectively enhanced. Therefore, the DCM analysis indicates

that the top–down signals from the MFC help modulate the

processing of the bottom–up signals, thus adding a dynamic

dimension to the brain activations identified by the stimuli and

conditions.

Functional connectivity can be also analyzed using

analytical methods quite distinct from DCM, such as various

types of autoregressive methods (see Valdés-Sosa et al., 2005;

Ioannides, 2007, and the references therein). This means that

one analytical technique can be used to complement the

weaknesses of the other, using the same underlying data set.

4.7. Summary of whole brain studies

Many previous whole brain imaging studies have helped

elucidate the spatiotemporal pattern of responses during many

key temporal dynamic processes. Techniques from this

evolving field will continue to be indispensable in temporal

dynamic research, including in delineating the spatiotemporal

patterns of brain activity and patterns of functional and effective

connectivity.

5. Attention and eye movements: a thumbnail sketch

Under natural viewing conditions, attentional shifts are

intricately related with eye movements. However, much of what

we know about temporal dynamic effects of attention comes

from experiments with eye position controls, typically fixation.

Some results from these experiments that help illustrate a few

key temporal dynamic effects of attention are briefly outlined

below.

5.1. Image-driven vs. goal-driven attention

In general, attention can be image-driven, so that it is

allocated to a given part of the scene based either on which part

of the image is salient (e.g., comes on suddenly, or has a

distinctive color, shape, etc.), or it can be goal-driven, allocated

on the basis of which object or image characteristic the viewer

is looking for (for reviews, see Yantis and Serences, 2003;

Maunsell and Treue, 2006; also see Peters et al., 2005;

Zhaoping and May, 2007). Time courses of such image-driven

vs. goal-driven mechanisms tend to be very different, as do the

time courses of goal-driven attention in different tasks. In our

context, this is important because it means that the dynamics of

processing of the same scene can be different depending on the

attentional condition.

Neurophysiological studies of image-driven attention

typically use a visual search for an unknown target in an array

of relatively simple, geometric shapes. For instance, the subject

may be instructed to look for a unique ‘odd-man-out’ target

among a field of various colored letters. ERP studies using such

paradigms show that if the array contains the target, neural

activity is increased beginning 120–150 ms after the stimulus

onset, and spatial attention is directed to it about 25–50 ms

later. For various technical reasons, the precise cortical origin of

this ERP is unclear. However, comparable effects have been

recently found in macaque V4 (Mazer and Gallant, 2003;

Ogawa and Komatsu, 2004; Bichot et al., 2005; also see

Maunsell and Treue, 2006). ERP and macaque single-unit

studies also indicate that, when the stimulus array does not

contain a target, attention tends to shift from one object to

another in a more or less serial fashion once every 100 ms or so

(Luck, 1999, 2006; Bichot et al., 2005; also see Maunsell and

Treue, 2006).

Goal-driven attention, also referred to as task-directed

attention, can have different time courses depending on whether

attention is directed to an image location or to an image feature

(spatial and feature-based attention, respectively; see Hayden

and Gallant, 2005; Maunsell and Treue, 2006).

5.2. Goal-driven, spatial attention

In these experiments, the subject typically attends to a

given spatial location, and visual stimuli are subsequently

presented at the attended location and at another, comparable

unattended location, and the responses are typically compared

for stimuli at the attended vs. unattended location. In ERP

studies, the first clear-cut differences generally occur in the

extrastriate cortex beginning at about 60–100 ms after the

stimulus onset, wherein the responses to the attended stimulus

are enhanced relative to the response to the unattended

stimulus. No such differential effect is discernible in the

striate cortex during this time. This is generally interpreted to

mean that directed spatial attention selectively enhances the

feed-forward transmission of visual information in the

extrastriate cortex beginning at about 60–100 ms after the

stimulus onset (Luck, 1999, 2006). These findings from whole

brain imaging studies are broadly consistent with those from

monkey single-unit studies (Luck, 1999, 2006; also see

Maunsell and Treue, 2006).

5.3. Goal-driven, feature-based attention

There is some evidence that space-based attention has

different dynamics than feature-based attention. For instance,

space-based attention can be transiently disrupted by the abrupt

appearance of visual stimuli (Nakayama and Mackeben, 1989;

Egeth and Yantis, 1997), but it is unclear whether feature-

based attention is disrupted in this manner (Lamy and Tsal,

2001).

Hayden and Gallant (2005) compared the responses of

macaque V4 neurons during spatial vs. feature-based attention.

They found that neuronal responses increased when spatial

attention was directed toward the CRF of the cell, and were

modulated by the identity of the target of feature-based

attention. Modulation by spatial attention was weaker during

the initial transients, and stronger afterwards. In contrast, the

modulation by feature-based attention was relatively constant

throughout the response. Hayden and Gallant suggest that

stimulus onset transients disrupt spatial attention, but not

feature attention, and that spatial attention reflects a combina-

tion of stimulus-driven and goal-driven processes, whereas

feature-based attention is purely goal driven.
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5.4. Attention and eye movements in natural vision

One of the main difficulties in characterizing the temporal

dynamic effects of shifting eye position and attention is that

these shifts are largely unpredictable during natural viewing.

Although we know that salient image locations tend to elicit eye

movements to them, the temporal sequence of eye movements

is largely unpredictable (Henderson and Hollingworth, 1998;

Torralba et al., 2006). There is some evidence that this may not

be a problem for characterizing the response dynamics in at

least some visual areas. For instance, in macaque IT, the

responses are virtually unaltered by free viewing (DiCarlo and

Maunsell, 2000; but see Sheinberg and Logothetis, 2001). This

raises the prospect that, in the future, it may be possible to

characterize the temporal dynamics of natural vision largely in

terms of a series of static views of the appropriate parts of the

scene. However, it is not known the extent to which this is true

for other high-level visual areas.

At the perceptual level, the sequence of eye movements

clearly has considerable effect on the dynamics of scene

understanding (Henderson and Hollingworth, 1998; Pyly-

shyn, 2003; also see Najemnik and Geisler, 2005), although it

is much less clear whether it matters to the eventual outcome

of the scene understanding process. This is one of the key

questions in temporal dynamic research, but it is also one of

the more difficult ones to address, since doing so would

require rigorously comparing the scene understanding

resulting from different sequences of a given set of fixations

(Box 4).

It is important to note that it is currently altogether unclear

how to incorporate attentional effects within the Bayesian

framework (Hegdé and Felleman, 2007). For instance, image-

driven attention amounts to estimating the image probabilities

using selected part/s of the image, as opposed to the whole

image as the Bayesian models currently do. But there is every

reason to believe that this is an eminently addressable problem.

Indeed, models that estimate the saliency of different parts of

the image to construct a saliency ‘map’ of the image (Peters

et al., 2005; Zhaoping and May, 2007) are a promising way of

modeling the effects of attention, including its temporal

dynamic effects, in the Bayesian framework.

6. Coarse-to-fine processing vs. Bayesian inference as a

framework for understanding temporal dynamic
phenomena

This issue is worth delving into because a wide variety of

visual temporal dynamic phenomena have been described as

either ‘coarse-to-fine’ or ‘global-to-local’. Many studies have

used the two terms synonymously (see, e.g., Iidaka et al., 2004;

Peyrin et al., 2005, 2006), although some others have sought to

distinguish between the two concepts (see, e.g., Hughes et al.,

1996). This article has used the two terms interchangeably, if

only because the distinction between them seems arbitrary and

not widely accepted. But the more substantive issue is whether

coarse-to-fine processing is a useful framework for under-

standing visual temporal dynamic phenomena. This section

will argue that it is not, and that the Bayesian framework is a

better alternative.

6.1. The computational appeal of coarse-to-fine processing

Coarse-to-fine processing is a potentially useful information

processing strategy from two interrelated computational

perspectives. The first is that since coarse-to-fine processing

is well-suited for representing the visual world, because the

visual world, or more precisely our understanding of it, is

hierarchical. As an illustration, consider the following modified

version of the parlor game ‘Twenty Questions’, where the

player has to infer, by asking no more than twenty questions, the

visual object in a given image without actually seeing the

image. What is the best strategy for deciding which types of

question to ask first, and which ones later? Clearly, it is efficient

to ask about global object categories first (‘Is it a person,

animal, plant, or an inanimate object?’), and more fine-tuned

questions later, based on the answers to earlier questions. This

hierarchical strategy is useful, ultimately because our under-

standing of the visual world is hierarchical. When this is not the

case, e.g., when the ‘objects’ consist of a dozen alphanumeric

characters scattered on a page, a coarse-to-fine strategy is

decidedly non-optimal for guessing them. By contrast, it can be

rigorously proven that a Bayesian inference is the ideal strategy

in both cases (see Kersten et al., 2004; Doya et al., 2006). In

other words, Bayesian inference is a better strategy in this case

because it subsumes, and extends, the coarse-to-fine frame-

work.

Many large scale theories incorporate global-to-local

hierarchical representation in a more rigorous fashion (Wersing

and Korner, 2003; Amit et al., 2004; Serre et al., 2007; Ullman,

2007). While these studies generally do not deal with the

temporal dimension explicitly, the temporal dimension is

implicit in them. That is, these models formulate visual

processing as a set of serial, typically hierarchical, Bayesian

decisions, so that earlier decisions address image data on a

coarser (or more global) scale, and the latter decisions deal with

finer scale data.

A second sense in which coarse-to-fine processing is

computationally useful is that it allows the system to balance

speed vs. accuracy. When the processing hardware is finite (as it

is in the brain), and the input is sufficiently complex (as typical

nature scenes are), the amount of information available for a

given decision depends on the processing duration, which

means that faster decisions tend to be more error prone and

making more accurate decisions takes longer. Thus, optimal

decision-making requires finding an optimal speed vs. accuracy

tradeoff. Imagine, in our parlor game example, the task is to

guess what is in the picture with the fewest questions possible

or, in an equivalent but more explicitly temporal sense, to guess

it as quickly as possible. Again, Bayesian inference is the ideal

strategy for optimizing speed vs. accuracy (Doya et al., 2006).

It should be noted that the above two scenarios are not

mutually exclusive. The former is about finding a likely

interpretation of the scene, and the latter is about finding it

efficiently. Under natural conditions, where visual perception
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primarily subserves action, the two are different aspects of the

same process. It is easy to appreciate this by imagining that you

are playing the above game against another person, and the first

person to guess it correctly wins.

6.2. Caveats about the concept of coarse-to-fine processing

The potential computational advantages of coarse-to-fine

processing aside, it is empirically clear that coarse-to-fine

processing, in one form or another, is widespread in the visual

system. Indeed, Allen and Freeman (2006, p. 11773) have

proposed, in the context of coding at the level of individual

neurons, that coarse-to-fine processing is a fundamental coding

strategy in the central nervous system. But obviously, a large

variety of temporal changes at the population and perceptual

levels can also be described as coarse-to-fine. Indeed, this

concept is currently vague and flexible enough that it seems to

fit many different phenomena with minimal suspension of

disbelief. For instance, the changes in the perceptual level

(vision-at-glance followed by vision-with-scrutiny) seem to fit

this definition, but so does orientation tuning in some cases. If

both are valid instances of this process, how are the two related?

If they are unrelated, what is to be gained by referring to them

by the same label? If one of them better fits the definition, which

one and why?

But even the more narrow view that coarse-to-fine

processing is a fundamental coding strategy at the neural level

is problematic, for many reasons. First, as noted above, not all

cells show a clear-cut coarse-to-fine pattern even for given

visual parameter and within a given area; some even clearly

show the opposite, i.e., fine-to-coarse, pattern (Menz and

Freeman, 2003, 2004; also see Gillespie et al., 2001; Mazer

et al., 2002). As noted in Section 3.9, direction selectivity

evolves a local-to-global fashion for many MT cells. Second, in

some cases, such as orientation selectivity in the primary visual

cortex, some studies have found a coarse-to-fine change but

others have not (Section 3.4). Third, some neural temporal

dynamic patterns are too complex to be captured adequately as

coarse-to-fine. For instance, in macaque V1, the temporal

dynamics of color selectivity in macaqueV1, for which the

LGN input mechanisms are reasonably well understood, cannot

be meaningfully described as coarse-to-fine (Cottaris and De

Valois, 1998; G.D. Horwitz et al., 2005; also see Shapley,

1998). Fourth, as noted in Section 3.5, while some temporal

changes do appear to follow a bona fide coarse-to-fine pattern

when the response noise is ignored, the picture gets

considerably more complex when response noise is taken into

account. Finally, as noted in Box 2, whether a given temporal

dynamic change can be classified as coarse-to-fine, fine-to-

coarse, or something else often depends on which time points

are being compared. Thus, unless the relevant parameters of

comparison are all specified, coarse-to-fine processing can

amount to the proverbial blind man’s view of the elephant.

It is also unclear whether coarse-to-fine processing at the

level of individual cell level necessarily leads to coarse-to-fine

changes at the population level. And, regardless of whether the

response readout at the individual cell or at the population level

underlies the percept in a given case, the extent to which coarse-

to-fine changes in the neuronal response can explain the coarse-

to-fine changes in the percept is unclear. In other words,

although both perceptual and neuronal changes can be

described as coarse-to-fine, we do not yet know whether the

various relevant processes are fundamentally related, or

whether the similarities are merely superficial.

Box 2. Coarse-to-fine or fine-to-coarse?

Many neurophysiological studies have reported that, by

some key measures, the representation of the stimulus

changes in a coarse-to-fine fashion in time. The many

complexities of this notion are outlined in Section 6.

This box will illustrate an additional analytical complex-

ity, namely that the same underlying temporal pattern

might appear to represent a coarse-to-fine or fine-to-

coarse change, depending on which two time points are

compared.

The red line denotes the temporal changes in the sharp-

ness of tuning (i.e., inverse of tuning width) of a

hypothetical neuron. Note that it shows the same broad

pattern of fast rise followed by a slower fall as many

actual neurons do (see, e.g., Fig. 8a). The dashed vertical

line denotes the time point (50 ms) at which the tuning is

sharpest (i.e., narrowest or finest). When the change in

the tuning sharpness is measured symmetrically about

this time point (e.g., green double arrow) the tuning

width will appear to have changed in a coarse-to-fine

fashion. On the other hand, when tuning width change

is measured relative to the time of sharpest tuning and a

later time point, the tuning width will appear to have

changed in a fine-to-coarse fashion. Note that in the

instance shown, the tuning width changes are mea-

sured over the same time range (40 ms).

The two types of analyses, both of which are principled,

produce such discrepant results whenever the under-

lying measure of tuning width (red line in figure)

changes non-monotonically in time, which is presum-

ably more common than not. Note also that it is not

possible to determine whether either or neither of the

two temporal changes is computationally meaningful

without knowing the time point/s at which the brain

samples the neuron’s responses.
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Altogether, while the concept of coarse-to-fine processing

has undeniable pedagogical utility, it has very little explanatory

or predictive value. Thus, at least as yet, both the strength and

weakness of this concept may be that it simplifies complex

temporal dynamic realities.

6.3. Bayesian framework in perspective

If there is a sense in which the coarse-to-fine is better than

the Bayesian framework, it remains to be established. This is

because the Bayesian framework subsumes the coarse-to-fine

framework, as noted in various contexts above. This is not to

say that the Bayesian framework has no weaknesses of its own,

much less to say that it is an answer to everything. For one

thing, as noted above, Bayesian framework cannot currently

incorporate attentional selection or selection of relevant prior

knowledge (see Sections 2.6 and 5). For another, it is far from

clear what a Bayesian explanation for the potential temporal

dynamic effects of affective factors, such as emotion, may even

look like.

Nonetheless, it is fair to say that the Bayesian framework

holds enormous promise as a framework of understanding and

studying how sensory and motor systems work (Doya et al.,

2006; Yuille and Kersten, 2006). In the context of temporal

dynamics, its biggest weakness is simply that it is as yet

untested.

7. Future directions

Studying visual temporal dynamics for its own sake, while

worthwhile, is far less interesting than studying it to understand

how we see. In this regard, one of the major challenges for the

future research is to rigorously characterize the various

temporal dynamic changes at the neural and perceptual levels

Box 3. Correlation, decorrelation, and sparsening of the population response

The figure schematically illustrates some scenarios of response correlation and decorrelation at the population level.

Each panel shows a highly idealized ‘population’ consisting of four cells (circles). Each quadrant of a given circle denotes

the response of the cell to a given stimulus, color-coded according to the color scale at bottom left.

When the response pattern to a given set of stimuli is similar from one cell to the next, the population response is said to

be correlated. In many visual areas, population response during the onset transient tends to be correlated not only across

cells, but across stimuli as well ( panel (a)). Following the transients, the population response decorrelates. Recall from

Section 3.1 that the average response of a given cell generally decreases after the transient. This means that, in principle,

the population response can decorrelate when the responses decrease differentially from one cell to the next, one

stimulus to the next, or both. Panels (b–e) illustrate four such scenarios. (b) Responses decorrelate only in a restricted

subpopulation of cells (bottom row), whereas the response of the remaining cells remain largely unchanged (top row). (c)

All cells decorrelate with respect to the population response during the transient, but different subpopulations of cells

(rows) decorrelate similarly, so that the responses remain correlated within the given subpopulation. (d) Response

sparsening, whereby a given cell is responsive to only a subset of the stimuli, and only a subset of the cells in the

population is responsive to a given stimulus. Thus, in the instance shown, the responses are sparsened both within and

across cells. Note also that while this does result in some limited decorrelation of the population response, sparsened

responses are inherently correlated, in that most of the responses are at or near zero. This type of limited decorrelation by

sparsening appears to be widespread in the visual system (Section 3.5; Hegdé and Van Essen, 2004, 2006; also see Vinje

and Gallant, 2000, 2002; Brincat and Connor, 2006). (e) Maximal decorrelation, where responses are as different as

possible from one stimulus to the next and from one cell to the next. This type of decorrelation appears to underlie the

dynamic representation of odor in the olfactory bulb (Laurent, 2002).
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(see Box 4). At least in the near term, much of this research will

necessarily be open-ended and exploratory in nature, since we

do not yet know enough about visual temporal dynamics to

construct large scale hypotheses about it.

Future research in visual temporal dynamics is likely to

benefit greatly from three broad trends of current research. The

first is our improving ability to study the responses of a large

number of neurons in many different brain areas simulta-

neously, often using a combination of single-unit recoding and/

or whole brain imaging techniques (see, e.g., Logothetis et al.,

2001; Bar et al., 2006; Schmid et al., 2006).

The second is our ability to deal with the complexity of

natural images and the dynamic nature of the brain’s response

to them. Broadly speaking, a major drawback of the

conventional neurophysiological and psychometric methods

is that they, however implicitly, tend to treat vision as a static

system. In such a system, the changes in the output are due

solely to the changes in the input, and the system itself remains

unchanged (or static) in the process. For example, the

orientation tuning curve of a neuron is a static measure of

its response, because it does not recognize that the orientation

tuning can and does change in time. Most of the studies outlined

above characterize the (temporal) dynamics of the system by

measuring its static responses across several time points. While

this method of extending the static methods to study dynamics

is perfectly principled (see, e.g., Watson, 1986), it also tends to

make the analysis fundamentally descriptive. It is much like

trying to understand climate change by comparing the daily

weather reports from a large number of locations over a long

time—it is simple and straightforward, but it is laborious,

misses much, and predicts little. However, much progress is

being made in recent years in developing rigorous, quantitative

tools for analyzing the dynamics of the visual system (Rust

et al., 2005; Wu et al., 2006; Ioannides, 2007).

Finally, as noted throughout this article, it is increasingly

clear that studying vision as a probabilistic, Bayesian inference

provides a powerful and unifying framework for understanding

visual perception and visually guided action (Doya et al., 2006;

Yuille and Kersten, 2006). But this framework currently does

not explicitly account for dynamic changes in the underlying

probabilistic factors. Thus, understanding vision as a dynamic

inferential process is likely to be a fruitful avenue of future

research.

Acknowledgments

The preparation of this article was supported by ONR grant

N00014-05-1-0124 to my advisor, Dr. Daniel Kersten. I am also

grateful to Dr. Kersten for providing the picture in Fig. 1, and

for his insights about visual processing in general. I thank Dr.

David Van Essen for his permission to use the hitherto

unpublished data collected in his laboratory shown in Fig. 8. I

am grateful to Dr. Fei-Fei Li and Pietro Perona for sharing their

data prior to publication, and Drs. Rufin VanRullen and Yasuko

Sugase-Miyamoto for providing original figures from their

work, and Drs. Sheng He and Gordon Legge for stimulating

discussions. Many colleagues, most notably Dr. Sugase-

Miyamoto and two anonymous reviewers, offered many

valuable suggestions for improving the manuscript.

References

Afraz, S.R., Kiani, R., Esteky, H., 2006. Microstimulation of inferotemporal

cortex influences face categorization. Nature 442, 692–695.

Ahissar, M., Hochstein, S., 2004. The reverse hierarchy theory of visual

perceptual learning. Trends Cogn. Sci. 8, 457–464.

Albrecht, D.G., Geisler, W.S., Frazor, R.A., Crane, A.M., 2002. Visual cortex

neurons of monkeys and cats: temporal dynamics of the contrast response

function. J. Neurophysiol. 88, 888–913.

Allen, E.A., Freeman, R.D., 2006. Dynamic spatial processing originates in

early visual pathways. J. Neurosci. 26, 11763–11774.

Amassian, V.E., Cracco, R.Q., Maccabee, P.J., Cracco, J.B., Rudell, A., Eberle,

L., 1989. Suppression of visual perception by magnetic coil stimulation of

human occipital cortex. Electroencephalogr. Clin. Neurophysiol. 4, 458–

462.

Amit, Y., Geman, D., Fan, X., 2004. A coarse-to-fine strategy for multiclass

shape detection. IEEE Trans. Pattern Anal. Mach. Intell. 26, 1606–1621.

Anand, S., Hotson, J., 2002. Transcranial magnetic stimulation: neurophysio-

logical applications and safety. Brain Cogn. 50, 366–386.

Andreassi, J.L., 2006. Psychophysiology: Human Behavior and Physiological

Response, fifth ed. Lawrence Erlbaum Associates, Mahwah, NJ.

Averbeck, B.B., Latham, P.E., Pouget, A., 2006. Neural correlations, population

coding and computation. Nat. Rev. Neurosci. 7, 358–366.

Box 4. Key questions for future research

� How do various probabilistic parameters that under-

lie a given visual inference change over time? How do

these changes affect the inference?

� How does the perception of natural visual scenes

change under natural viewing conditions? How does

this differ from what we have learned from using

geometric stimuli with fixation controls?

� How do the response properties of individual neu-

rons and neuronal populations in various visual cor-

tical areas change over time? What type of feed-

forward and recurrent mechanisms bring about these

changes? To what extent are these changes adaptive,

i.e., to what extent does the visual system adapt in

response to the stimulus and various other task

requirements?

� How are the temporal dynamic patterns in various

brain areas related to each other and to those at the

perceptual level?

� Is it feasible to understand the temporal dynamics of

natural visual perception as a series of fixation

epochs?

� Is it feasible to quantitatively model the temporal

dynamics with a relatively small number of spatio-

temporal parameters in a given area or set of areas?

How predictive are such models?

� How do the complexities of natural scenes such as

occlusion, visual clutter, camouflage, and variations

of lighting, shadows, color, texture, etc., affect the

dynamics of vision?

� How does the dynamics of visual perception relate to

the dynamics of perceptual learning? (cf. Hochstein

and Ahissar, 2002; Ahissar and Hochstein, 2004).
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