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Abstract

The mechanisms of center-surround summation, the process by which visual cortical

neurons integrate the inputs from the classical receptive field and the non-classical surround,

are poorly understood. We constructed a set of 32 representative center-surround stimuli using

a repertoire of four bar types, and recorded the responses of 83 neurons from visual area V1 in

two awake, fixating monkeys to each of the stimuli. We then studied, for each cell individually,

the extent to which the observed responses of the cell to center-surround stimuli could be

accounted for by a linear regression model of center-surround summation. The model

hypothesized that the response of a given cell to a given center-surround stimulus is a weighted

linear sum of its responses to the four bar types. This model accurately predicted the observed

responses to the center-surround stimuli for about two-thirds of V1 cells (56/83, 67%). The

ability of the model to predict the observed responses of the cells was not attributable to

overfitting or other modeling artifacts, a lack of surround modulation, or a lack of response

modulation across different center-surround stimuli. Furthermore, for many cells, the model

was able to predict the cell’s responses to novel stimuli, indicating that the model captured the

center-surround summation behavior of these cells adequately. Together, our results indi-

cate that this simple bottom-up summation mechanism can account for many important
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center-surround phenomena in V1, including surround inhibition or facilitation, and

selectivity for popout or collinear stimuli.

r 2004 Elsevier B.V. All rights reserved.
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Surround modulation
1. Introduction

Neural responses to stimuli presented within the classical receptive field (CRF or
‘center’) of visual cortical cells can be substantially modulated by additional stimuli
presented in the non-classical surround [1,2,4,32]. This process is referred to as
surround modulation, center-surround summation, or contextual modulation.
Surround modulation is believed to play an important role in many aspects of
visual information processing, including feature discrimination [1,2,32], figure-
ground segregation [1,2,7,19,24,32,36,67; but see 23,36,48], ‘sparsening’ of the neural
code [62], contrast-gain control [9], filling-in of visual scotomata [45] and
representation of contours, junctions, corners [11], three-dimensional surface
configurations [3], and border ownership [66]. Surround modulation has been
reported in many areas of the visual cortex [1–5,19,32–34,66–67] and to some extent
in the somatosensory cortex [15,16].
In visual area V1, where surround modulation has been studied most intensively,

the nature of the modulation varies from cell to cell. Even for a single cell, some
surround stimuli can be facilitative and others suppressive, and the magnitude of this
facilitation or suppression can vary depending on the stimuli in the center and the
surround [35,36,46,52,55,56]. It has been suggested that the overall response
of V1 cells to center-surround stimuli is a function of the relative strengths
of the center vs. surround stimulation [35,55,64]. However, the mechanisms by which
V1 cells integrate the inputs from the center and the surround remain largely
unresolved.
We investigated the possibility that V1 cells integrate the inputs from the center

and the surround as their weighted linear sum. We recorded the responses of
macaque V1 neurons to a representative set of conventional center-surround stimuli.
We then studied the extent to which the observed responses of each individual cell to
center-surround stimuli could be accounted for by a linear regression model, distinct
from the linear models of superpositional summation by simple cell CRFs in V1 (see
[14,41,63]). Linear regression models, as opposed to more complex models, were
used because they are among the simplest to implement and interpret. We show in
this report that for about two-thirds of V1 cells, the regression model accurately
predicted the observed responses to the center-surround stimuli as a weighted (i.e.,
scaled) linear sum of the cell’s responses to individual bar types, and adequately
accounted for most of the observed response variation regardless of the nature or
magnitude of surround modulation. Using a series of tests, we also show that the
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success of the regression model is not attributable to modeling artifacts or a lack of
response modulation.
The physiological results have been described in detail elsewhere [23]. This report

focuses on the modeling of the physiological results.
2. Methods

2.1. General neurophysiological procedures

In this report, responses of neurons from visual area V1 to center-surround stimuli
were recorded in awake, fixating monkeys, using procedures described in detail
elsewhere [23]. Briefly, the cell’s CRF was mapped and its preferences were
determined using a mouse driven bar on the computer’s display. The cells in our
sample in general had crisply delineated CRF boundaries, so that the center-
surround distinction was obvious and robust. The CRF sizes were consistent with
the eccentricities [54,60]. To ensure that no surround bar stimulated the CRF during
fixation, stimuli were constructed so that the closest points of any two bars were
41.2 CRF diameters or 41.21 apart, whichever was greater. The animal’s eye
position was monitored throughout the trial using a scleral search coil, and the trial
was aborted if the eye deviated by more than 0.51 from the fixation point at any time
during the trial. Single unit recording was carried out using standard procedures.
Recording coordinates were randomly chosen from within the craniotomy. Stimuli
were presented one per trial for 1 s each while the animal fixated and the response of
an isolated V1 unit was simultaneously recorded. The response to each stimulus was
calculated from a 300ms time window starting 50ms after the stimulus onset, and
averaged across 10 trials.
2.2. Visual stimulation

The stimulus set consisted 32 center-surround stimuli constructed from four
different bar types (see Fig. 1), so that the center contained a single bar of a given bar
type, and the surround was constituted using one or more of the bar types. For a
given cell, all center-surround stimuli contained the same total number of bars.
Surround stimuli with more than one bar type in the surround had equal, or the
closest possible to equal, numbers of each bar type in the surround. The bars of the
center-surround stimuli were distributed on the computer display in randomly
jittered rows and columns so that no rows, columns, or center vs. surround
distinctions based on spacing were apparent by visual inspection. For any given
stimulus, the location of the surround bars was randomly shuffled from one
presentation to the next. Together, these measures minimized the likelihood that a
given subregion of the surround was consistently stimulated by the same bar across
presentations.
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Fig. 1. Stimulus set. (A) ‘Building blocks’ of the stimulus set. The stimulus set was constructed using four

different bar types, each which had the cell’s most preferred or least preferred color and orientation. (B)

Stimulus set. The center-surround stimuli consisted of a single bar of one bar type within the CRF (dashed

circle), with many additional bars, drawn from the one or more the bar types, in the non-classical

surround. Eight representative types of center-surround stimuli were constructed for each of the four types

of center bar (rows). see Section 2 for additional details.
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2.3. Modeling

The modeling was an entirely post hoc analysis; the experimental conditions
described above were in no way designed to produce any given modeling result. All
modeling analyses were carried out using the statistical utility S-Plus (Insightful
Corp., Seattle, WA). Two linear models were constructed, each using conventional
linear regression techniques, which expressed a response (or dependent) variable in
terms of one or more predictor (or independent) variables (see Fig. 2B). The first
model, the center-alone model, was given by the univariate linear equation:

Y i ¼ aþ bCi þ ei; (1)

where the response variable Y i is cell’s observed response to center-surround
stimulus i (averaged across trials), the predictor variable Ci is the cell’s observed
response to the center bar of the stimulus i when presented alone in the CRF
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(averaged across trials), and ei is the residual for stimulus i. Slope b and offset a were
the same for all stimuli for a given cell, and were calculated using least mean square
regression so to minimize

P32
i¼1e

2
i (S-Plus routines lm or glm) [7,17,50]. Each cell was

fit individually to a given model. No values, including outliers, were excluded from
any model for any cell.
The second linear model, the center-surround model, was a multivariate model

derived by adding surround factors S12S3 to the center-alone model (Eq. (1)) and
was given by

Y i ¼ aþ b0Ci þ b1Si1 þ b2Si2 þ b3Si3 þ ei; (2)

where Y i is the cell’s response to center-surround stimulus i and Sij is the cell’s
response to the jth surround bar type of stimulus i when presented alone in the CRF.
This model allowed for interactions among factors (subject to certain criteria, see
below), so that when all possible factors and factor interactions were included, this
model was described by

Y i ¼ aþ b0Ci þ b1Si1 þ b2Si2 þ b3Si3 þ b4CiSi1

þ b5CiSi2 þ b6CiSi3 þ b7Si1Si2 þ b8Si1Si3 þ b9Si2Si3

þ b10CiSi1Si2 þ b11CiSi1Si3 þ b12CiSi2Si3 þ b13Si1Si2Si3

þ b14CiSi1Si2Si3 þ ei: ð3Þ

The values of offset a and weight coefficients b0–b14, which applied to the cell as
whole and did not vary from stimulus to stimulus, were calculated so as to minimizeP32

i¼1e
2
i : Each of the three surround factors represented one of the three possible bar

types (as opposed to individual bars) in the surround. For those stimuli for which all
surround bars were of the same type, all three surround factors had the same value,
and for those stimuli with two bar types in the surround, the value of the third factor
represented the average of the first two. These methods of assigning values to the
surround factors were equivalent, since all stimuli had the same total number of bars
in the surround and, when they had more than one bar type, equal proportions of the
different bar types.
As in Eq. (3), the center-surround model allowed linear interactions among

factors, since such interactions are plausible given the functional architecture of V1
[8,22,31,37]. Note that interaction among factors is a commonly used feature of
linear modeling and do not violate the linearity of the model (see [7,17,50]). To
ensure that the interaction factors did not artifactually improve the fit
[7,17,29,50,53], each of the 11 possible interaction factors was individually screened
and was retained only if it significantly improved the fit of the model to the data as
measured by the Mallows’ Cp criterion [7,17,50]. This process retained an average of
2.23 interaction factors per cell. The interaction factors retained by individual
screening were included in the final model only if they also collectively improved the
fit of the model significantly (po0:05) as measured by a partial F-test [7,17,50]. Note
that these screening procedures increase the stringency of the model at the expense of
reducing its power, in a manner analogous to increasing the criterion value in a test
of significance (see [17,29,53]).
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The proportion of the data accounted for by a given model, or, equivalently, the fit
of the model to the data, is measured by its R2 value. This value, sometimes referred
to as the coefficient of determination (or coefficient of multiple determination, for
multivariate models), is defined as the variation in the data accounted for by the
model divided by the total variation in the data [17,53], and ranges from 0 (no
variation in the data accounted for) to 1.0 (all variation in the data accounted for).
The portions of the data not accounted for by the model, or the residuals, are
expected to be distributed randomly if the given model adequately accounts for the
relationship between the dependent and independent variables of the data [17,50].
The conventional method of testing the significance of the fit of the model to the data
is by an F-test, which measures the probability p that the R2 value of the model is
greater than zero by chance [17,29,53]. A partial F-test similarly measures the
significance of the fit provided by a subset of the independent variables [15,29,50,53].
We also attempted to fit several mixed-effects non-linear models to the data. In

these models, the linear relation between the response variable and the predictor
variables in Eq. (2) was replaced by a non-linear relation, such that
Exponential model:

Y i ¼ aþ Cb0
i þ Sb1

i1 þ Sb2
i2 þ Sb3

i3 þ ei (4)

or
Logarithmic model:

Y i ¼ aþ b0 log10ðCiÞ þ b1 log10ðSi1Þ þ b2 log10ðSi2Þ

þ b3 log10ðSi3Þ þ ei ð5Þ

or
Fig. 2. Linear modeling of center-surround responses of an exemplar V1 cell. (A) Cell’s actual responses

and the responses predicted by two different linear models to each of the 32 center-surround stimuli (bar

array icons), and the cell’s responses to the four bars from which center-surround stimuli were constructed

(bar icons). The solid arrow denotes the cell’s most suppressive stimulus with the preferred bar in the center.

The ampersand, ‘+’ and ‘#’ signs denote stimuli to which the cell’s responses were progressively less

suppressive. See Section 3 for details. (B) Linear models. To predict the response to a given center-

surround stimulus, each model regressed the observed response of the cell to the appropriate stimulus

(dependent or response variable) on one or more predictor (independent) variables. In the center-alone

model (top), the cell’s response to a given center-surround stimulus was predicted as a function of the cell’s

response to only the center element of each center-surround stimulus as shown for four exemplar stimuli.

In the center-surround model (bottom), the contributions from both the center and surround were taken

into account. For either model, the weight coefficients (not shown) were calculated so as to minimize the

overall difference between the response variable and the weighted sum of the predictor variables across all

32 stimuli (see Section 2 for details). Correlation between the observed responses and the predicted

responses for the center-alone model (C) and for the center-surround model (D). Each dot represents a

single center-surround stimulus. The dashed line denotes the line of perfect correlation (r ¼ 1:0) and the

solid lines denote 95% confidence bands. (E) Probability density distribution of the residuals for the center-

surround model. The dashed line is the best-fitting Gaussian curve. For this cell, the values of the

coefficients of the best-fitting center-surround model were a ¼ 0:23; b0 ¼ 15:67; b1 ¼ 6:07; b2 ¼ 0:15; b2 ¼

�13:11; b3 ¼ �0:32: The remaining factors in Eq. (3) were not retained for this cell after the model

selection procedure (see Section 2 for details).
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Polynomial model:

Y i ¼ aþ b0Ci þ b1S
2
i1 þ b2S

3
i2 þ b3S

4
i3 þ ei: (6)

Interactions among factors were allowed (although not shown in Eqs. (4)–(6)) in a
manner analogous to that illustrated for the linear model in Eq. (3). These non-linear
models were chosen solely because the relevant equations were compatible with the
structure of our data so that model fitting could be attempted, and not because they
were necessarily representative of all possible non-linear functions or of possible
summation mechanisms (see, e.g., [55,56]). These models were screened, and the fit of
the models to the data evaluated, using the same procedures as for the linear models.
None of these non-linear models produced a significant fit for any cell. Two quasi-
linear models, previously reported to provide good descriptions of spatial
summation within CRFs in area MT (see [64]), did not provide significantly better
fit than the corresponding center-surround model for any cell as determined by the
partial F-test (not shown).

2.4. Tests for modeling artifacts

Three different tests, each based on randomization procedures (for overviews,
see [18,40]), were used to test the center-surround model for each cell against
modeling artifacts. The reshuffling test was a modification of the permutation
test previously described [10,44], which tests for artifacts resulting from covariance
among predictor variable values. To perform the reshuffling test on a given
cell, the cell’s responses to the four bar types from which the stimulus set was
constructed were reassigned, so that the cell’s actual response to each bar was
assigned to one of the three remaining bars. Nine such novel bar–response
combinations are possible. The best fit of the center-surround model to the observed
data was recalculated for each of the nine such combinations. For a cell to pass the
reshuffling test, the R2 value had to be no less than the R2 value obtained from using
the actual data, and the p value no greater than 0.017 for both the overall and the
partial F-tests, for at least one of the nine rounds. The criterion value of
0.017 represents the 0.05 criterion after Bonferroni correction for multiple
comparisons [26].
The random reallocation test was modified from the one in [39, p. 172]. To

perform this test on a given cell, each of the four bar types from which the stimulus
set was constructed was assigned a random value within the range of the
cell’s observed maximum and minimum response to these bar types. The best fit
of the center-surround model to the observed data was recalculated using the
modeling procedure described above. This process was repeated 1000 times for
each cell. In order to pass the random reallocation test, a given cell had to have
po0:05 for both the overall F-test and the partial F-test for at least 50 of the 1000
rounds.
The test for overfitting (see [39, p. 104]) used the original best-fitting center-

surround model of the cell (constructed using the actual data as described earlier),
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but with the actual values of predictor variable randomly reassigned among
predictor variables. Overfitting artifacts were ruled out at a level of po0:05 for a
given cell if the R2 values from the randomization rounds exceeded the actual R2

value for no more than 50 of the 1000 rounds. Note that the reshuffling and random
reallocation tests above do not address overfitting by the original center-surround
model, since for those tests the model that best fit the data was recalculated during
each round of randomization. The F-tests described above assess whether the R2 of
the given model is significantly above zero given both the model and the data
[17,29,53], but do not address whether a given model by itself can produce a good fit
regardless of the input data.
2.5. Using the center-surround model to predict the responses to ‘novel’ stimuli

A center-surround model was constructed for a given cell using the model
selection procedures described above, except that only the responses to half of the 32
center-surround stimuli were used as the response variable values. The 16 center-
surround stimuli were chosen either randomly or on the basis of the bar composition
of (i.e., the number of bar types in) the surround, as described in Section 3. The
responses to the remaining 16 ‘novel’ stimuli, which did not contribute to the model,
were calculated given only the bar compositions of the novel stimuli and the offset
and the weight coefficients provided by the model, using conventional prediction
procedures (see [50,53,59]; S-plus routine predict). Note that these procedures do not
call for testing the significance of the fit of the model to the data (for details, see
[50,53,59]). But in any event, given the fact that the number of response variable
values (or, equivalently, sample size n) is inversely proportional to the square of
standard error of estimate of Y (see [29], pp. 171–178; [53], pp. 353–354), models
constructed using the responses to only half of the 32 stimuli can be expected to have
correspondingly less significant and less accurate fit to the data, and have
correspondingly larger prediction intervals, relative to the models constructed using
responses to all 32 stimuli.
2.6. Indices

The average surround modulation (ASM) index was calculated for each cell asPn
i¼1½ðjSi � Cij=Ci�=n; where Si and Ci are, respectively, the cell’s responses

to the ith center-surround stimulus and the corresponding center element
of the stimulus. We calculated the absolute, and not the signed, difference bet-
ween Si and Ci because most cells in our sample were suppressed by some center-
surround stimuli and enhanced by others. The surround-factor fit increment (SFI)
index was calculated for each cell as ðR2

s � R2
c=R2

cÞ; where R2
s and R2

c are the R2

values of the center-surround and the center-alone models, respectively. The
response modulation index (RMI) was calculated as sR=R̄; where sR and R̄ are
standard deviation and mean, respectively, of the cell’s responses to all 32 center-
surround stimuli.
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3. Results

3.1. Responses to center-surround stimuli

We recorded the responses of individual V1 neurons to center-surround stimuli in
awake, fixating monkeys (see Section 2). We used 32 representative center-surround
stimuli, each consisting of a single bar presented in the cell’s CRF (center) with many
additional bars in the surround. Each stimulus was constructed from a repertoire of
four bar types (Fig. 1A): (i) the bar with the cell’s preferred orientation and color
(preferred bar), (ii) the bar with the cell’s preferred color but the least preferred, or
null, orientation, (iii) the bar with the cell’s preferred orientation but null color, and
(iv) the bar with the cell’s null color and orientations (null bar). The stimulus set
(Fig. 1B) consisted of many popout stimuli (e.g., preferred bar in the center and null
bars in the surround), homogeneous stimuli (e.g., preferred bars in the center and the
surround), and ‘conjunction-target’ stimuli (in which the center bar was defined by a
unique combination of color and orientation). All these types of stimuli have been
well-studied psychophysically [58]. The neuronal responses to popout and
homogeneous stimuli have been studied extensively (see [1,2]), although the
responses to conjunction-target stimuli have not (but see [23]).
We recorded the responses of 83 V1 neurons to the 32 center-surround stimuli

from two macaque monkeys (see Section 2). We also recorded the response of each
cell’s CRF to each of the four bar types from which the stimulus set was constructed.
Fig. 2A shows the responses of a V1 cell to these stimuli. The response of the cell to
each of the four center stimuli (Fig. 2A, right) was substantially suppressed in most
cases by the addition of surround stimuli (Fig. 2A, left). To quantify the degree of
this surround modulation, we calculated an ASM index (see Section 2). The ASM
value for this cell was 0.34, indicating that the response of the cell to center-surround
stimuli was modulated (mostly suppressed) by an average of 34% relative to the
response to the corresponding center bar alone. The surround suppression was
statistically significant for all but six center-surround stimuli (pairwise Mann–Whit-
ney tests, po0:05). Furthermore, the responses were significantly modulated from
one center-surround stimulus to the next for each of the four center stimuli (rows in
Fig. 2A; one-way ANOVA, po0:05).
3.2. Linear modeling of the observed responses

We first tested whether the responses of this cell could be accounted for as a linear
function of the stimulation of the CRF alone, using the center-alone model. This
model predicted, using conventional linear regression (see Section 2), the cell’s
responses to center-surround stimuli as a linear function of only the cell’s responses
to the appropriate center element of the center-surround stimulus while ignoring any
contributions of the surround stimuli to the cell’s response (Fig. 2B, top). Note that
while the definition of linearity that linear regression models use is formally
appropriate (see [7,17,50]), it is nonetheless different from that used by the linear
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models of superpositional spatial summation by V1 simple cells [14,41,63], an issue
we will address in Section 4.
The responses predicted by this model were poorly correlated with the observed

responses of the cell (Fig. 2A and C), while the residuals were highly correlated
with the observed responses (r ¼ 0:97; not shown). The percentage of the cell’s
response variation accounted for by the model, measured by its R2 value, was
small and statistically insignificant (R2 ¼ 0:068; F-test, p ¼ 0:19). Thus, the
center-alone model failed to accurately predict the responses of this cell to center-
surround stimuli, consistent with the fact that the cell was substantially surround
modulated.
We next tested a more detailed linear regression model, the center-surround

model, which predicted the responses to center-surround stimuli as a weighted linear
sum of the contributions from the various bar types from the center and the
surround (see Section 2). We used the cell’s response to the center element when
presented alone as an estimate of the input from the CRF during center-surround
stimulation. Obtaining independent estimates of the surround inputs is considerably
more difficult, since V1 cells usually do not respond to stimuli presented alone in the
surround [32,35,38,46,52]. We therefore used the cell’s response to the given
surround bar type when presented alone within the CRF as an estimate of the
response of the non-classical surround to that element during center-surround
stimulation (Fig. 2B, bottom). Thus, the center-surround model tested the
hypothesis that a given cell’s responses to the center-surround stimuli were
predictable as a linear weighted sum of the cell’s responses to individual bar types
presented individually within the CRF.
A few qualitative observations suggest such an approach might be feasible. For

the exemplar cell illustrated in Fig. 2A, the cell’s responses to nearly all center-
surround stimuli (open bars) were suppressed relative to the corresponding center-
alone stimuli (dashed lines). The response to the center-surround stimuli depended
primarily on the center bar (rows in Fig. 2A) and to a lesser extent on the surround
stimuli, consistent with a modulatory role for the surround. If the stimulus strengths
of the surround were to account for the modulatory effect of the surround, then the
modulatory effect of the surround should correspond to the strengths of the bar
types of the surround. A detailed examination of the responses suggests that this was
largely (but not always) the case. For instance, when the cell’s preferred bar was in
the center (top row in Fig. 2A), the surround that consisted entirely of bars of the
cell’s preferred bars (open vertical bars) was the most suppressive (filled arrow). The
surround consisting entirely of the bars with the preferred orientation but null color
(filled vertical bars, ampersand) was slightly less suppressive (ampersand), and
surrounds consisting of the two least effective bar types (open and filled horizontal

bars) were correspondingly even less suppressive (‘+’ and ‘#’ signs, respectively).
These observations suggest, but by no means prove, that surround strength
corresponded to the magnitude of surround suppression for this cell. If these
observations were valid, then the center-surround model, which represented a
quantitative implementation of these notions, should adequately predict the cell’s
responses to the center-surround stimuli.
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Individual V1 cells. (A) R2 ¼ 0:95; (B) R2 ¼ 0:72; and (C) R2 ¼ 0:79: For each cell, the overall fit of the

center-surround model and the contribution of the surround factors to the fit were significant (po0:05;
overall and partial F-tests) and the distribution of the residuals was random (Kolmogorov–Smirnov test,

p40:05) (not shown). Also, the observed responses were within the 95% confidence band of the predicted

responses for all 32 center-surround stimuli for each cell (not shown). In panel B, the ‘%’ and ‘@’ signs

denote the cell’s most effective center-surround stimuli with the preferred and the null bars, respectively, in

the center. The coefficients of the center-surround models were: (A) a ¼ 1:23; b0 ¼ 0:97; b1 ¼ �1:54;
b2 ¼ �3:17; b3 ¼ 3:18; (B) a ¼ 0:73; b0 ¼ �1:70; b1 ¼ �0:78; b2 ¼ �3:52; b3 ¼ 1:57; b4 ¼ 0:30; (C) a ¼

2:38; b0 ¼ �3:97; b1 ¼ 1:24; b2 ¼ �12:11; b3 ¼ 10:54; b6 ¼ 0:42:
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In general, the responses predicted by the center-surround model matched the
cell’s observed responses well, regardless of the nature of the center-surround
feature discontinuities, or the sign or the degree of surround modulation (Fig. 2A
and D). Overall, the model accounted for 84% of the variation in the cell’s
center-surround responses (R2 ¼ 0:84), and this fit of the predicted responses
to the observed responses was statistically significant (‘overall’ F-test, po0:05). The
residuals were poorly correlated with the observed responses (r ¼ 0:22; p40:05;
not shown), indicating that the predicted responses matched the observed res-
ponses regardless of the response magnitude. Furthermore, the residuals were
distributed randomly (Kolmogorov–Smirnov test for goodness of fit, p40:05;
Fig. 2E), indicating that the model provided an adequate and unbiased description
of the data for this cell. Together, the above results indicate that the center-
surround model accurately predicted the responses of this cell to center-surround
stimuli.
To quantify the improvement in the fit of the linear model by the addition of the

surround factors for this cell, we calculated an SFI index (see Section 2). The cell had
an SFI value of 11.35, indicating that the center-surround model accounted for
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J. Hegdé, D.J. Felleman / Neurocomputing 63 (2005) 499–525 511
about 11-fold more response variation than the center-alone model for the cell. This
improvement in the fit by the addition of surround factors (or the ‘partial fit’) was
statistically significant (partial F-test, po0:05), indicating that the improvement
could not be attributed to artifacts arising form the inclusion of the predictor
variables pertaining to the stimulus surround.
The center-surround model also accurately predicted the responses of V1 cells

with other types of color and orientation tuning, surround modulation profiles
and overall stimulus preferences (Fig. 3). The cell shown in Fig. 3A was a color
selective cell, whereas the cell shown in Fig. 3C was modestly tuned for both color
and orientation. The cell shown in Fig. 3B was exclusively surround enhanced,
while the cell shown in Fig. 3C was exclusively surround suppressed. In some
cases, the same surround was facilitative or suppressive, depending on the strength of
the center stimulus (arrows in Fig. 3A). In other cases, the selectivity of the
cell for the nature of the center-surround feature discontinuity (e.g., popout vs. non-
popout) depended on the bar in the center. For instance, for the cell shown in Fig.
3B, a homogeneous stimulus and a conjunction-target stimulus were the two most
effective stimuli with the cell’s preferred bar in the center (‘%’ signs, top row).
However, with the null bar in the center (bottom row), the same cell responded best
to a popout stimulus (‘@’ sign). This paradoxical feature of many V1 cells has
previously led to debates over whether or not V1 cells are popout selective
[2,23,24,32,35,46,52,56].
For the population as a whole (Fig. 4), the overall fit of the center-surround

model and the increment in the fit of the model compared to the fit of the
center-alone model were both statistically significant for about two-thirds of
the cells (56/83, 67%; overall F-test and the partial F-test, po0:05). The model
accounted for an average of 88% of the response variation for these cells
(mean R2 ¼ 0:88; median=0.92), and the residuals were distributed randomly for
most of these cells (53/56, 95% or 64% of the total; Kolmogorov–Smirnov test,
p40:05).
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3.3. Testing for modeling artifacts

Given the surprising efficacy of the center-surround model for V1 cells, we carried
out three additional tests to determine whether the fit of the model to the data was an
artifact of one or more aspects of our modeling procedure. Each test was based on
randomization of the data (see Section 2), so that if the fit of the model were an
artifact of the modeling procedure and not inherent in the data themselves, the
randomized data should produce at least as good of a fit as the actual data.
To determine whether the performance of the center-surround model was due to a

fortuitous combination of responses to the stimuli, we studied how the fit of the
model was affected by either reshuffling or randomly reallocating the cell’s responses
to the four bar types from which the stimulus set was constructed (see Section 2).
Either test involved determining whether the cell’s observed responses to center-
surround stimuli could be accurately predicted as an appropriate linear weighted
sum of novel values for predictor variables; all procedures were otherwise identical to
those used for the actual data. Either reshuffling or randomizing the input values
significantly reduced the level of the fit of the model, as measured by the R2 values
(paired t-tests, po0:05) (Fig. 5). The fit had a lower R2 value, or was statistically
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J. Hegdé, D.J. Felleman / Neurocomputing 63 (2005) 499–525 513
insignificant (overall and partial F-tests, p40:05), or both for all but five cells by the
reshuffling method (Fig. 5A) and for all cells by the random reallocation method
(Fig. 5B). Thus, the fit of the center-surround model to the actual data was in general
much better than that expected from random chance.
Another significant concern with multiple regression models such as the center-

surround model is overfitting, or a good fit resulting from an unduly large number of
predictor variables [7,17,29,50,53]. Thus, it is possible in principle that the
performance of the center-surround model was an artifact of the mathematical fact
that larger number of predictor variables result in usually higher (and never lower)
R2 values [7,17,29,50,53]. We tested this scenario for each cell using the test for
overfitting (see Section 2). For each cell, we randomized the cell’s observed responses
to the predictor variables, so that the cell’s responses to the four bar types were
randomly assigned among the center-surround stimuli, regardless of the actual bar
composition of the stimuli. The values of the response variable, i.e., cell’s observed
responses to the center-surround stimuli, were not randomized and remained
unchanged. We then computed the R2 value for the data using the given cell’s
original center-surround model derived using the actual data. This test differed from
the random reallocation test above in that this test used the same center-surround
model as used for the actual data for each cell, and in terms of the manner in which
the input data were randomized (see Section 2 for details). If the performance of the
center-surround model was due to the fact that there were too many predictor
variables in the original model, then the model should produce comparable R2 values
from randomized vs. actual data. Fig. 6 shows the average R2 value from 1000
rounds of randomization for each cell in histogram form. The R2 values from
randomized data were significantly lower than those obtained using the same model
and the non-randomized data (paired t-test, po0:05). For the 56 cells for which the
center-surround model provided a good fit to the non-randomized data (filled bars in
Fig. 6), the average R2 value was 0.032 (median, 0.033), and this was, on average,
about 25-fold lower than the R2 value from the actual data. Furthermore, for none
of these 56 cells, the fit of the model to the randomized data was statistically
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significant (po0:05; data not shown). Thus, the fit of the model to the observed data
was not an artifact of overfitting.
Together, the results from the randomization tests indicate that the performance

of the center-surround model was not an artifact of our modeling procedures.

3.4. Degree of surround modulation and performance of the center-surround model

In principle, the performance of the center-surround model could be due to a lack
of surround modulation. In such a case, the center stimulus would account for all or
most of the cell’s response to center-surround stimuli, and the center-surround model
would successfully predict the cell’s responses based largely on the contribution of
the center factor alone, even if the surround factors contribute little to the fit.
However, this was not the case: For the 83 cells in our sample, the responses to the
center-surround stimuli on average modulated (i.e., suppressed or facilitated) 25%
relative to the center-alone stimuli [23]. Importantly, the cells’ R2 values were not
correlated with the magnitude of surround modulation (r ¼ �0:13), indicating that
the lack of fit for a given cell was not necessarily attributable to large surround
modulations, nor did smaller modulations ensure a good fit. Thus, the performance
of the center-surround model could not be attributed to a lack of surround
modulation.
The fact that the V1 cells were substantially surround modulated, however, does

not by itself ensure that the surround factors contributed significantly to the center-
surround model. The SFI index described earlier measures the extent to which taking
surround modulation into account improves the fit of the model (see Section 2).
Fig. 7 shows the population distribution of the SFI values. The contribution of the
surround factors to the overall fit of the center-surround model was statistically
significant for about four-fifths of the cells (67/83, 81%) as measured by the partial
F-test (data not shown). For these cells, the fit of the center-surround model
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improved by an average of about 13-fold by the addition of the surround factors, as
measured by the SFI (i.e., average SFI=13.14). The 56 cells for which both the
overall fit of the center-surround model and the contribution of the surround factors
to the fit of the model were statistically significant (56/83, 67%; overall F-test and
partial F-test, po0:05; filled bars in Fig. 7) had an average SFI value of 17.24,
indicating that for these cells the addition of the surround factors to the center-
surround model increased the fit of the model by more than 17-fold. Taken together,
these results indicate not only that the surround stimuli we used substantially
modulated the responses of the V1 cells, but also that the center-surround model
adequately accounted for the surround modulation for a substantial majority of V1
cells.

3.5. Response modulation across center-surround stimuli

Poor response modulation across the center-surround stimuli is another potential
source of artifactually good fit. In such a case, any model which accurately predicts
the mean response of the cell to the center-surround stimuli would provide a good fit
to the data (for additional information, see [29], pp. 174–175; [53], pp. 340–347).
While the various model selection procedures we used, including the Mallows’ Cp

criterion and the F-tests, implicitly test for this possibility (see [17,29,53]; also see
Section 2), a direct measure of response modulation would be desirable. We used the
RMI to measure the modulation of each cell’s response across the 32 center-
surround stimuli (see Section 2). For the population as a whole, the mean RMI value
was 0.40, indicating that the responses of V1 cells were in general substantially
modulated by the center-surround stimuli, and that a model in general could not
accurately predict a given cell’s responses to the center-surround stimuli simply by
estimating the mean response of the cell to the stimuli (data not shown).
Furthermore, the RMI values were well-correlated with the R2 values (r ¼ 0:62),
contrary to what would be expected if the performance of the center-surround model
was due to a lack of surround modulation. The RMI values of the cells for which the
center-surround model provided a good fit vs. those cells for which the model did not
were statistically indistinguishable from each other (two-tailed t-test, p40:05),
indicating that the differences in the performance of the model between the two sets
of cells were not attributable to differences in the response modulation of the cells.
We obtained qualitatively similar results when we repeated this analysis separately
for each of the four groups of eight center-surround stimuli with the same center bar
(see Fig. 1) (data not shown). Together, these data indicate that the performance (or
lack thereof) of the center-surround model was not attributable to a lack of response
modulation across the center-surround stimuli.

3.6. Ability of the center-surround model to predict the responses to ‘novel’ stimuli

If a given center-surround model adequately captures center-surround summation
behavior of a given cell, then the model should be able to predict the cell’s res-
ponses to novel center-surround stimuli. To test this hypothesis, we constructed the
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center-surround model for each cell using the cell’s responses to only 16 of the 32
center-surround stimuli (see Section 2). The remaining 16 stimuli are ‘novel’ to the
model, in that the cell’s responses to these stimuli played no part in the construction
of the model. We then used the model to predict, using conventional procedures of
multiple regression, the cell’s response to the novel stimuli. Given the fact that the
models were based on the responses to only one-half of the center-surround stimuli,
the accuracy of the predictions and the significance of the fit (e.g., as determined by
an F-test) can be expected to be lower relative to the earlier models which used the
full complement of the cell’s responses ([17,29,53]; also see Section 2).
The prediction procedure is illustrated in Fig. 8A and B using an exemplar V1 cell.

The center-surround model for the cell was constructed using only the cell’s



ARTICLE IN PRESS
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responses to the 16 center-surround stimuli which contained a single type of bar in
the surround (i.e., popout or homogeneous stimuli) and the responses to the four bar
types from which the stimuli were constructed (Fig. 8A). For these stimuli, the
predicted responses of the model (not shown) and the actual responses of the cell
(open bars in panel A) were significantly correlated with each other (correlation
coefficient r ¼ 0:86; po0:05; one-tailed Pearson product moment correlation test),
indicating that it was statistically appropriate to use this model to predict the cell’s
responses to novel stimuli ([59], pp. 499–502). The model’s predicted responses to 16
novel stimuli closely matched the cell’s responses to these stimuli (correlation
coefficient r0 ¼ 0:89; po0:05; panel B).
The same prediction procedure was repeated for all the remaining cells. For each

cell, the predicted responses and actual responses to the original 16 stimuli (panel A)
were significantly correlated (r40:50; po0:05; data not shown). The population
distribution of the coefficients of correlation (r0) between the predicted and the actual
responses to the novel stimuli is shown in Fig. 8C. The r0 values were statistically
significant (r040:50; po0:05) for nearly two-thirds of the V1 cells (53/83, 64%;
hatched bars in Fig. 8C), indicating that for these cells, the center-surround model
was able to accurately predict the responses to novel stimuli in panel B, given the
responses to the 16 stimuli in panel A. The average correlation coefficient for these
53 cells was 0.81. For the 56 cells for which the original center-surround model using
all 32 stimuli provided a significant fit to the full data set (filled bars in Fig. 8C), the
correlation was significant for about two-thirds (37/56, 66% or 45% of the total) of
the cells (filled hatched bars, mean r0 ¼ 0:64). Interestingly, the predicted responses to
the novel stimuli were significantly anti-correlated with the observed responses
(r0o� 0:50; po0:05) for two cells, indicating that for these cells, surround
Fig. 8. Predictive ability of the center-surround model. (A) Responses (7SEM) of an exemplar V1 cell to

16 center-surround stimuli (bar array icons, left) and to the four bar types from which the center-surround

stimuli were constructed (bar icons, right). A center-surround model for the cell was constructed using only

the data in this panel. The correlation coefficient r between the paired observed and predicted responses to

these 16 stimuli was 0.86 (not shown). (B) Center-surround model for the cell constructed using data in

panel A was used to predict the cell’s responses to ‘novel’ stimuli shown in this panel, using conventional

regression prediction procedures. The predicted (gray bars) and the actual responses (open bars) are shown

side by side for each stimulus. The correlation coefficient between the paired observed and predicted

responses to the novel stimuli, r0; was 0.89. (C) The same prediction procedure was repeated for the

remaining 82 cells using the two halves of the stimulus set. The resulting correlation coefficients between

the observed and the predicted responses to the novel stimuli (r0) are shown here in histogram form for all

83 cells. The exemplar cell in panels A and B of this figure is denoted with a ‘+’. The exemplar cells in Fig.

2 (asterisk) and Fig. 3A–D are also denoted. Note that the r0 value (0.41) for the exemplar cell in Fig. 3C

was not statistically significant. (D) The same prediction procedure as above, except using randomly

chosen subset of 16 cells. For each cell, 16 out of the 32 stimuli were chosen at random and center-

surround model was constructed using these data. The resulting correlation coefficients between the

observed and the predicted responses to the novel stimuli (r0), averaged from 103 rounds, are shown here in

histogram form for all 83 cells. In both panels C and D, filled bars denote the 56 cells with po0:05 for both
the overall and partial F-tests using the responses to all 32 stimuli; the hatched bars denote cells for which

correlation was statistically significant (po0:05; r040:50).
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modulation was qualitatively different with one vs. more bar types in the surround
(i.e., stimuli panel A vs. B).
In the above analysis, the two sets of 16 stimuli were chosen based on the number

of bar types in the surround. To test whether the center-surround model can
accurately predict responses to the center-surround stimuli regardless of the
particular subsets of the stimuli chosen, we repeated the above analysis using the
cell’s responses to a randomly chosen 16 of the 32 center-surround stimuli and used
the model to predict the responses to the remaining half of the stimuli (see Section 2).
This process was repeated 103 times for each cell. The average r0 values from 103

rounds of randomization are shown in Fig. 8D for all V1 cells. The mean r0 value was
statistically significant (i.e., mean r040:50) for about 60% (50/83) of the cells
(hatched bars in Fig. 8D), indicating that the center-surround model accurately
predicted the responses to the novel stimuli for these cells. Of the 56 cells for which
the center-surround model provided a good fit with all 32 stimuli (filled bars in Fig.
8B), the model was also able to accurately predict the responses to the novel stimuli
for 36 cells (64% or 43% of the total; filled hatched bars in Fig. 8B). Together, the
results of the prediction analysis indicate that the center-surround model provided a
good description of the center-surround summation, and was able to predict
responses to novel stimuli, for many of V1 cells.
4. Discussion

4.1. Quantitative framework for center-surround summation

Our results show that the response of many V1 cells to center-surround stimuli can
be accurately described as a weighted linear sum of the cell’s responses to stimuli in
the center and the surround. These results represent the first demonstration that the
actual responses of V1 cells to center-surround stimuli can be described by a
quantitative model, linear or otherwise. The fact that a linear model provided a good
account of the observed surround modulation, and non-linear models were not
needed, for a majority of the cells substantially simplifies our view of center-
surround modulation in V1 and neural mechanisms required to implement it. Since
not all possible non-linear models were tested, our results cannot be taken to mean
that linear models were better than non-linear models (also see below), but only that
linear models provided a good account of center-surround summation for many
V1 cells.
To the extent that the center-surround responses of many V1 cells could be

quantitatively described in terms of the cell’s responses to stimuli in the center and
the surround, our results provide a quantitative framework of explanation for many
complexities of contextual effects. For instance, it is clear that whether a given
surround is facilitative or suppressive depends on the strength of the stimulation of
the center vs. the surround: the same surround can be suppressive when the center
stimulus is highly effective, or facilitative when the drive in the center is relatively
weak (see, e.g., Fig. 3A; also see [24,46,55,56,64]). Similarly, our results demonstrate
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how differential responsiveness to popout vs. non-popout stimuli can emerge in the
same V1 cell as a function of the relative strengths of the stimuli in center and the
surround. The questions of whether surround modulation is primarily suppressive or
facilitative, or whether or not V1 cells are selective for popout stimuli, have been a
matter of some debate (for overviews, see [46,55,56]; also see [23,36,48]). Our results
quantitatively illustrate that these and other complex, seemingly contradictory
center-surround phenomena can in many cases be accounted for by the relative
strengths of the stimuli and the weights the cell uses in integrating the inputs (see
[24,35,46,55,56]). That is not to say, however, that all aspects of center-surround
summation can be accounted for by a linear model, an issue we will address later.
Our results also offer a simple mechanistic explanation for the role of surround

modulation in many aspects of higher-order visual processing. For instance, the
selectivity of many V1 cells for collinear vs. perpendicular surrounds
([30,32,35,36,42,46,52,56; also see 24]; also see Fig. 3) is believed to play an
important role in the representation of many complex shape characteristics,
including junctions and corners of lines [11] and of surfaces [3]. Our results
demonstrate that the selectivity for junctions and corners can emerge in cells that are
otherwise responsive to collinear elements from a differential efficacy of individual
center-surround elements in driving the cell (also see below). Thus, a cell which
prefers a right-angle (i.e., ‘L’ shape) over collinear lines (i.e., ‘–’ shape) when both
stimuli are presented in a given color may reverse its preferences when the stimuli are
presented in a different color or orientation (this report, also see [24]), or at different
luminance contrasts [46]. From a more cognitive viewpoint, the fact that surround
modulation in V1 can be adequately explained in terms of bottom-up sensory inputs
calls into question the notion that this modulation explicitly represents a higher-
order perceptual correlate of figure-ground segregation or popout [34,67] at this level
of cortex (also see [23,36,48]).

4.2. Relationship to previous work

The notion that the response of a visual neuron to center-surround stimuli
represents a balance between the strengths of the stimuli in the center vs. the
surround was, to our knowledge, first proposed by Levitt and Lund [35] (also see
[24,55,57,64]), who showed that the response of V1 cells to center-surround stimuli
varied as a function of the luminance contrasts of the stimuli in the center and the
surround. Although this view of center-surround summation was supported by many
later neurophysiological studies [46,51,55], the quantitative relationship between the
stimulus strengths and the center-surround responses was not clear, nor was it clear
whether a single quantitative framework could explain the diversity of the center-
surround summation behavior in V1 cells. Somers et al. [55] have proposed a non-
linear model which expresses the center-surround response of neurons as a function
of the relative strengths of the inputs from the center and the surround. Similarly,
Stemmler et al. [56] have proposed a neural network model which accounts for many
psychophysical aspects of popout and contour integration. However, in neither case
were the predictions of the model tested against the actual center-surround responses
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cells in V1 or elsewhere. The difficulty in estimating the inputs from the surround is a
major impediment to such testing in general, which our models address by instead
using the corresponding responses to the bar types presented individually in the
CRF. Many other previous models that dealt with center-surround interactions (e.g.,
[9,56]) did not, and were not intended to, directly address neuronal responses to
different center-surround stimuli. Our results address these issues by directly
comparing the predictions of a linear model to the observed responses to specific
center-surround stimuli (also see [64]).
It is important to distinguish the weighted linear summation we describe in this

report from the linear summation within V1 simple cell CRFs described previously
[12,28,41,47]. In the context of V1 simple cells, and in the context of linear systems
analysis in general, the term linear summation is typically used to exclusively mean
superpositional linear summation (see, e.g., [14], pp. 20–22). Briefly, a given spatial
summation is linear in this sense if and only if (a) the response of a cell to a
superposition of two (or more) stimuli is an unweighted sum, usually with
rectification, of its responses to the stimuli presented individually, and (b) the
scaling of the stimulus results in a corresponding scaling of the response (for
additional information, see [14,63]). By this definition, the weighted linear
summation we describe is clearly non-linear. Indeed, the process of surround
modulation itself is inherently non-linear by this definition, to the extent that the
surround stimuli which by themselves elicit little or no response from the cell
nonetheless inhibit or facilitate the response of the cell to the stimulus in the center.
Instead, the summation we describe is linear strictly in the sense, and only to the
extent, that it is adequately described by a linear model.

4.3. Neuronal mechanisms

An intriguing fact about our center-surround model is that the input by a given
bar type in the surround can be effectively estimated as the response of the CRF to
the given bar type. It would appear to a first approximation that the only
neural mechanism consistent with this is a scenario in which center-surround
summation is primarily mediated by lateral connections among cells with similar
tuning profiles, so that for any given bar, the response of the unit whose receptive
field is in the stimulus center is essentially the same as the responses of the units
whose receptive fields are in the surround. This scenario is anatomically plausible,
since nearly all of the excitatory long-range horizontal connections in V1, and
about half of the inhibitory connections, are among cells with similar tuning profiles
for orientation [20–22,31]. However, we wish to emphasize that our results do not
rule out alternative scenarios in which the surround units with dissimilar tuning
profiles also contribute substantially to the center-surround summation, but with the
level of activation of the CRF gating all surround inputs. In this case, the
weight coefficients of the linear model would reflect this gating. However, it is not
possible to ascertain either scenario by an examination of the weight coefficients
alone; further experiments, presumably at level of individual synapses, are needed
(see, e.g., [25]).
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Previous studies have suggested that connections across dissimilar orientation
domains in V1, which are generally inhibitory, could subserve the processing of
corners and T-junctions by selectively suppressing the responses to cross-oriented
line segments [11,20]. The connections across similar orientation domains, on the
other hand, could mediate the selectivity for collinear line segments (see [20]).
Indeed, this is largely consistent with recent psychophysical studies which suggest
that the selectivity for iso-orientation and cross-orientations are mediated by distinct
subsystems ([65], also see [30]). While the existence of such distinct subsystems is
entirely plausible, it is clear that a single V1 cell can also show selectivity for either
collinear or cross-oriented line segments depending on the strength of the stimuli in
the center vs. the surround ([35,46,55,56,64], this study). The two scenarios can be
reconciled if one assumes that both sets of connections—across similar and
dissimilar orientation domains—participate in the center-surround summation by
individual V1 cells, with one set of connections dominating over the other depending
on the strength of the collinear vs. cross-oriented surrounds.

4.4. Further explorations

The fact that V1 cells integrate the center-surround stimuli in a scaled linear
fashion straightforwardly suggests that explorations of both additional linearities
and deviations from linearity might be fruitful. Our models provide a useful point of
departure for both.
To begin with, scaled linear summation of center-surround stimuli in V1 may be

more extensive than our results suggest. It is possible that a different method of
estimating the surround contributions, or taking into account the size, spatial
heterogeneity and/or the temporal dynamics of the receptive fields
[12,13,36,38,49,51,61] may uncover additional components of the scaled linear
summation mechanism. For instance, it is clear that non-classical surrounds in V1
are considerably heterogeneous, in that the magnitude of surround modulation
varies as a function of distance from the CRF and of the nature of the mapping
stimulus, including its contrast [11,49] and that different subregions of the non-
classical surround may modulate the CRF response differently [38,51,66]. Whether
or not spatial summation within a given subregion is linear remains unclear. One
scenario is that spatial summation within each subregion is linear, perhaps with
varying weight coefficients across subregions. Alternatively, summation in some or
all of these subregions may be non-linear, which may account for, at least in part, the
failure of the linear model for some V1 cells. However, we believe local non-
linearities are unlikely for those cells for which the linear model provides a good fit,
since it requires a rather precise counterbalancing of the local non-linear effects to
achieve an overall linear effect. In any event, note that the possibility of the various
non-linearities notwithstanding, the fact that the summation is linear under the
experimental conditions described remains a useful result.
It remains to be seen whether the linear relationship holds for more complex

center-surround stimuli (e.g., stimuli constructed from a larger repertoire of bar
types), or for other visual features, most notably spatio-temporal summation of
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large-field motion. Many aspects of spatio-temporal summation within V1 simple
cell CRFs are known to be linear [12–14,36,28]. It also remains to be seen whether or
to what extent the scaled linear summation mechanism accounts for center-surround
summation in other visual areas. Spatial summation of motion stimuli within MT
cell CRFs is well accounted for by scaled linear summation, although allowing for
modest non-linearities improves the fit even further [6].
As noted above, it is likely that non-linear mechanisms underlie, at least in part,

the inability of the linear model to account for all response variation in all cells.
There are many potential sources of non-linearities in center-surround summation
including, but not limited to, local spatial non-linearities, temporal non-linearities,
response saturation, luminance contrast effects and top-down inputs
[24,27,30,35,43,46,56,65]. Many cortical phenomena believed to be mediated by
center-surround summation, such as contrast-gain control, cannot be fully explained
by purely linear mechanisms [9]. Thus, it is evident that non-linear models will be
ultimately needed to fully account for the complexities of surround modulation.
However, it may be feasible to investigate many of the non-linear effects as specific
deviations from linearity under specific experimental conditions.

4.5. Concluding remarks

Ultimately, both the strength and the limitation of our model, or of any model for
that matter, are that it simplifies complex realities. To the extent that the center-
surround model accounts for the observed complexity and diversity of the center-
surround summation behavior for a majority of V1 cells, it provides a rigorous
conceptual framework for how V1 cells integrate inputs form the center and the
surround. To the extent that the model does not account for the center-surround
modulation of all V1 cells, and to the extent that the model itself can be refined, it
offers a useful frame of reference, and a practical point of departure, for further
investigations into the mechanisms of center-surround modulation.
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