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Abstract

Contours and surface textures provide powerful cues used in image segmentation and the analysis of object shape.
To learn more about how the visual system extracts and represents these visual cues, we studied the responses of
V2 neurons in awake, fixating monkeys to complex contour stimuli (angles, intersections, arcs, and circles) and
texture patterns such as non-Cartesian gratings, along with conventional bars and sinusoidal gratings. Substantial
proportions of V2 cells conveyed information about many contour and texture characteristics associated with our
stimuli, including shape, size, orientation, and spatial frequency. However, the cells differed considerably in terms of
their degree of selectivity for the various stimulus characteristics. On average, V2 cells responded better to grating
stimuli but were more selective for contour stimuli. Metric multidimensional scaling and principal components
analysis showed that, as a population, V2 cells show strong correlations in how they respond to different stimulus
types. The first two and five principal components accounted for 69% and 85% of the overall response variation,
respectively, suggesting that the response correlations simplified the population representation of shape information
with relatively little loss of information. Moreover, smaller random subsets of the population carried response
correlation patterns very similar to the population as a whole, indicating that the response correlations were a
widespread property of V2 cells. Thus, V2 cells extract information about a number of higher order shape cues
related to contours and surface textures and about similarities among many of these shape cues. This may reflect an
efficient strategy of representing cues for image segmentation and object shape using finite neuronal resources.
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Introduction image segmentation and object recognition (see Grossberg, 1987;

Natural visual scenes are typically very complex, while the neuraIWiIkinson etal., 1998; Geisler & Super, 2000).
ypically very piex, Recent neurophysiological studies indicate that many charac-

resources of the visual system are finite, even with a billion or, . ° . .
tteI’IStICS of contours and surfaces are analyzed in early visual areas

more neurons in the \(lsual cor tex. Th.e visual system m.USt extracvl and V2. Spatial characteristics known to be represented in both
and represent visual information within these computational con-

. in V1 and V2 incl lectivity for orientation tial fr n
straints (see Marr, 1982; Osherson et al., 1995). and c_ude selectivity for orie ta_o » Spatial frequency,
;i . . . _length, and luminance contrast (for overviews, see Van Essen &
One strategy the visual system uses is to exploit information

. ! Gallant, 1994; Roe & Ts'o, 1997). Selectivity for a number of
about surface textures and object boundaries, or contours, as Cues ... . L .
. . ; : -~ ~“additional spatial characteristics emerge or become more promi-
to image segmentation and object shape. For example, in the image

- ent in V2. In particular, we have previously reported that many
shown in Fig. 1, the curved contours, smooth and glossy curved . . .
. - ells in V2 are preferentially responsive to complex contours,
surfaces and, in many cases, the star patterns at the tip he,

distinguish the berries from each other and from the other objectIHCIUOIIng _angles, mterseguon, arcs, or C|rcle§, or to non-Cartesian
. . . . . hyperbolic or polar) grating patterns (Hegdé & Van Essen, 2000).
in the image. The manner in which berries occlude one anothe . ' . -

In the present study, we have investigated how information

helps characterize local depth relationships. The angles I:)Etwee‘[;]lbout the characteristics of contours and gratings is represented in

and the intersections of, the stalks and leaves offer cues to thejr . R
: ; : . . V2. We carried out two sets of analyses, one at the individual cell
shape and spatial configuration. Psychophysical and theoretical . .
SR ] . level and another at the population level. The first set of analyses
studies indicate that the visual system indeed uses such cues 10~ o o S
was aimed at quantitatively characterizing how individual V2 cell

responses vary across the overall stimulus set and by specific

stimulus characteristics (shape, orientation, and size for contours;
Address correspondence and reprint requests to: David C. Van Essespatial frequency and orientation for gratings). This information

Department of Anatomy and Neurobiology, Washington University SChoo'prOVides useful insights into the diversity of response profiles
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USA. E-mail: vanessen@v1.wustl.edu. among V2 cells and about the degree to which individual cells help

*Current address: Vision Center Laboratory, The Salk Institute for "epresent different stimulus attributes. In the second set of analy-
Biological Studies, La Jolla, CA 92037, USA. ses, we used metric multidimensional scaling (MDS) and principal
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Fig. 1. A natural visual image. Contours and surface textures in the image provide useful cues to object shape and help segment the
image into visual objects. The berries are characterized by their curved outlines and smooth surfaces. The stalks and leaves have
relatively straight outlines and characteristic angles and intersections between the outlines. The pattern of occlusions of the contours
and surfaces provide cues to the relative depth of the berries, stalks, and leaves. How does the visual system extract and represent these
shape cues?

components analysis (PCA) to quantify the degree to which V2craniotomy. Neurophysiological recording was carried out using
cells as a population represent similarities between different stimepoxy-coated tungsten electrodes (A-M Systems, Carlsborg, WA)
uli. These methods provide an objective strategy for identifyingwith initial impedances of 3-5 M (at 1 kHz) inserted transdurally
higher order shape characteristics extracted by a given populationto the cortex. All animal-related procedures used in this study
of neurons (see, e.g. Young & Yamane, 1992). In addition, anawere reviewed and approved in advance by the Washington Uni-
lyzing the extent to which each principal component accounts fowersity Animal Studies Committee.

the overall response variation provides an objective basis for

assessing the dimensionality of the neural representation (Young &

Yamane, 1992; Field, 1995; Seung & Lee, 2000). Our analyse§timUIi

indicate that a relatively small number of principal components inThe stimulus set consisted of 48 grating stimuli and 80 contour
V2 account for a high proportion of the response variance assoCistimuyli (Fig. 2). The grating stimuli consisted three subclasses of
e_lted with complex shapes presented within the classical receptivigimuli: (1) sinusoidal gratings, (2) hyperbolic gratings, and (3)
field. polar (concentric and radial) gratings. The orientation/andhe
spatial frequency of the gratings (or the concentric and the radial
frequency, in case of polar gratings) varied systematically within
each subclass (see Fig. 2).

The contour stimuli consisted of ten subclasses of stimuli,
within each of which the stimuli varied in orientation and size (and
The responses of single units from area V2 were recorded irlso in shape in the case of subclass #4): (1) bars; (2) 3-way
awake, fixating macaque monkeys using standard procedures @#ersections (tristars); (3) crosses; (4) 5- and 6-armed stars, plus
described previously (Hegdé & Van Essen, 2000). Briefly, threecircles; (5) acute angles; (6) right angles; (7) obtuse angles; (8)
adult male macaques (twbacaca mulattaand oneMacaca  one-quarter arcs; (9) semicircles; and (10) three-quarter arcs. The
fasciculari9g were used in this study. Prior to fixation training, large contour stimuli were matched in size to the cell's preferred
each animal was implanted with a headpost, a scleral search colbar length (determined qualitatively during receptive-field map-
and an acrylic cranial patch using sterile surgical procedures. Afteping), with the exception of large obtuse angles and one-quarter
the animal was fully trained in the fixation task, a small craniot- arcs, which were reduced by 50% to ensure that they stayed within
omy (5 mm in diameter) was made through the acrylic patch ovethe classical receptive field. In all cases, the small contour stimuli
the recording site, and a recording chamber was mounted over thgere half the size of the large contours.

Methods

Surgical and recording procedures
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Fig. 2. The stimulus set. The stimulus set consisted of 128 stimuli, 48 of which were gratings, and the remaining 80 were contour stimuli. (A) The grhtinglstiedu12
sinusoidal gratings, 12 hyperbolic gratings, and 24 polar gratings. (B) The 80 contour stimuli included bars, tristars, crosses, stars, sctightaagtges, obtuse angles,
one-quarter arcs, semicircles, and three-quarter arcs and circles. For the purposes of some of the analyses in this study, the stimuli wereguemihedem 1 through 128
(grating stimuli from 1 through 48, and the contour stimuli from 49 through 128) as indicated loyithieersabove and below each column of stimuli.
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As noted in the Introduction, our stimulus set was designed to Each stimulus was presented in each of three jitter positions
explore the selectivity of V2 cells for a wide but obviously centered 12.5% of the receptive-field diameter away symmetri-
nonexhaustive set of low- and intermediate-level form cues. Theally around the receptive-field center. Stimuli were presented
grating stimuli probe the selectivity for conventional spatial fre- sequentially for 300 ms each with a 300-ms interstimulus interval
quency and orientation (sinusoids), as well as more complexvithin the classical receptive field while the animal fixated within
textural characteristics (non-Cartesian gratings) which the visuah window of 0.5-deg radius for a liquid reward. Up to six stimuli
system may use as basis functions for surface representatiomere presented per trial in this fashion. Only the data from the
(Perona, 1991; Eagelson, 1992; Wilkinson et al., 1998; also setials throughout which the animal maintained fixation within the
Bergen, 1991; Gallant et al., 1996). The contour stimuli werefixation window were used in this study. A total of 196 cells were
chosen to help probe the selectivity for conventional orientationrecorded, 122 from animal #1 and 63 cells from animal #3.
(bar stimuli), along with selectivity for the angles, intersections, Recording from animal #2 was discontinued after 11 cells because
orientations, and curvature of visual contours, which may play arof poor fixation performance.
important role in image segmentation and object recognition
(Rogers-Ramachandran & Ramachandran, 1997; Geisler & Supefnalysis of data

2000; Geisler et al., 2001; Sigman et al., 2001). Our choice of th(?Data analyses were carried out using the statistical utility S-Plus

gratl_ng and the contour .S.t'mu“ was als_o m_thated in part by(Statsci, Inc., Seattle, WA) or custom-written C language software.
previous reports of selectivity for these stimuli in area V4 (Gallant . .
The response to each stimulus was averaged from the net firing

et al., 1993, 1996; Pasupathy & Connor, 1999), which raised the o . > .
. L L rate from 12 repetitions of the stimulus, with four repetitions at
question of whether the selectivity for these stimuli ardeenovo - o - . "
. : . . . _each jitter position (9 repetitions, with three repetitions at each
in V4 or whether cells in lower areas of the visual hierarchy like . i -
. T . . jitter position, for 62 cells). The net firing rate was calculated for
V2 also showed selectivity to these stimuli. Practical consider- . . . .
. . ; - each presentation of the given stimulus by subtracting the back-
ations about the size of the stimulus set did not allow us address . :
round rate from the corresponding visually evoked response. The

many other important shape cues (e.g. disparity, motlon,. ch.), anaackground firing rate was calculated using a 80—100 ms window
obliged us to sample many important shape characteristics (e'?r'nean 94 ms; median, 95 ms) immediately preceding the stimulus

curvature) only sparsely. onset. The evoked response was calculated using a 80—-285 ms
time window (mean duration, 169 ms; median, 150 ms) starting
Visual stimulation and recording 20-80 ms after the stimulus onset (mean onset, 27 ms, median,

Single V2 cells were isolated based on both the shape and th%o ms), during which the overall firing rate of the cell (across all

. . . o repetitions of all stimuli) remained above background levels. Each
amplitude of the waveform using a window discriminator (Bak . S . .

) cell included in this study had at least one stimulus for which the

Electronics, Germantown, MD). In most cases, we were able to

. N evoked response differed from the background response at a
isolate and maintain the waveform under study so that all and only’. ~ .~ . . .

. . _ . ignificance level o < 0.05 (two-tailedt-test with Bonferroni
the spikes of the given waveform fell within the window. In the

small number of cases where this was not possible, the isolatioﬁorrection for multiple comparisons). Of a total of 196 cells
P ' recorded from the three animals, 180 cells (108 cells from animal

window was set to minimize contamination, even at the expense o 1, 11 cells from animal #2, and 61 cells from animal #3) passed
excluding some spikes of the intended waveform. The ceII’sthi’S test and were included’in this study

receptive-field boundaries were mapped using mouse-driven bar '
and grating stimuli on the computer’s monitor. The cell's preferred  Tests of significance

bar parameters, including preferred length, width, color, and ori- - conventional parametric tests of significance were used where
entation, were also determined. We tested all cells with mappab'ﬁppropriate. In most cases, however, we used randomization analy-
receptive fields which met the isolation criteria described abovegjs. A test of significance using randomization consists of deter-
Prior to recording from the cell, the stimulus set was reorienteqnining whether the value of a user-defined test statistic calculated
according to the cell's preferred orientation (see legend to Fig. 2)rom the actual data differs significantly from the distribution of
The line width of contour stimuli was set at the cell's qualitatively e same test statistic calculated from randomized data (see Manly,
determined preferred bar width. The grating stimuli had a spatiah 991 for an overview). For each test, an appropriate test statistic
frequency of 2, 4, or 6 cycles per receptive-field diameter andyas first calculated using the actual neural response data. The data
a Michelson contrast of 1.0. All stimuli were presented in the ere then randomized in a manner appropriate for the given test,
cell's preferred color, selected during the manual mapping from &nq the test statistic was recalculated using the randomized data.
palette of seven colors with varying luminances (red, 1.18/€d  The randomization process was repeatefi tifies (1F times in
green, 5.13 cfn?; blue, 0.51 cdm?; aqua, 5.70 cfn?; pink,  case of MDS analyses). The proportion of times the randomized
1.82 cm?; yellow, 7.02 cdm?; and white, 7.76 cfn? all  (egt statistic exceeded the actual test statistic constituted the one-
measured using Tektronix J17 photometer, Beaverton, OR). For athjled probabilityP that the actual test statistic was significantly
cells, the stimuli were presented against the same uniform grayreater than random.

background, the luminance of which was set at 3.71ntdto In cases involving multiple comparisons, we adopted a strin-
maximize fixation performance of the animal and minimize light gent approach of using the Bonferroni correctian € 0.05/n,
adaptation by the cells (see Wandell, 1995). This meant thafyhereq is the probability of Type | error and is the number of

both luminance and stimulus-background contrast varied fromomparisons; see Huberty & Morris, 1989; also see Savitz &
one cell to the next, depending on the preferred color. Thepishan, 1995; Thompson, 1998).

proportion of cells which preferred colors with lower versus

higher luminance than the background did not significantly dif- Indices of response modulation

fer from that expected from chance (two-tailed binomial proba- Two sets of indices were used to characterize various aspects of
bility test, P > 0.05). stimulus selectivity of V2 cells. In either case, larger values of a



Shape representation in V2 317

given index represented correspondingly greater stimulus selectianalogous to thé= ratio (see below). An MDS plot was first

ity by that measure. One set, thedulation indicesmeasured the generated using the original 128 128 correlation matrix de-
modulation, or variation, of a given cell’s responses across a givescribed above. Clusters of data points were provisionally identified
subset of stimuli above random noise levels using the conventiondtom a visual examination of the plot and tBeratio, defined as

F ratio. To calculate a given modulation index, we first calculatedthe variance of the between-cluster distances divided by the mean
theF ratio of the cell's responses to the given set of stimuli, givenvariance of within-cluster distances, was calculated. The correla-
by F = MSsetweed MSuithin, Where MSyemeenis the stimulus-to-  tion matrix was then randomized and an MDS plot was generated
stimulus variance (or, equivalently, the between-stimulus mearirom the randomized matrix. ThB ratio was calculated for this
squares), and thilS,inin is the average trial-to-trial variance (see MDS plot using the original composition of the clusters. The
Snedecor, 1934; Brase & Brase, 1995). We next randomized thelustering in the original matrix was considered significantly non-
responses across the stimuli and recalculateé tta¢io. The value  random if theP value was less than 0.05.

of a given modulation index was defined as theatio calculated
from the actual data divided by the averaBeratio from the
randomization rounds. The various modulation indices differed
from each other only in terms of the stimuli across which the
response modulation was measured.

The second set, thstimulus selectivity indice§SSl), mea-
sured the peakedness of the cell’s response profile (i.e. respons
of the cell to a given [sub]set of stimuli) and had the general
form [1 — (RmearRpeal], WhereRyeanis the average response of
the cell to the given subset of stimuli aflcaxis the response
of the cell to its most effective stimulus from among the given
subset of stimuli. The various stimulus selectivity indices differed
from each other only in terms of the stimuli involved.

Cophenetic correlation

Cophenetic correlation is a method of calculating the correla-
tion coefficient between paired matrices or other high-dimensional
data (for overviews, see Sokal & Rohlf, 1962; Sneath & Sokal,
%973). To calculate the cophenetic correlation between a given pair
6F stimulus plots, such as those generated by MDS, we first
calculated all pairwise distances among the 128 stimuli in each
plot. This resulted in two paired vectors, one from each plot, each
containing 128 elements. The cophenetic correlation coefficient
rc between the two 2D plots is the conventional correlation
coefficient between the two paired vectors. Like the conventional
correlation coefficient, the values of vary from 1.0 (perfect
correlation) to 0.0 (no correlation) te1.0 (perfect anticorrelation).

Analysis of response correlations PCA (S-Plus routineprincomp simplifies complex, high-

To analyze patterns of response correlation across the populaimensional data by identifying a small number of factors that
tion, we used MDS and PCA. Both are well-established and widelyunderlie global patterns in the data and determining the extent to
used multivariate statistical techniques for analyzing complexwhich each factor, or principal component, “explains” the data. In
high-dimensional data (for overviews, see Kruskal & Wish, 1978;a manner analogous, but not identical, to multiple linear regres-
Dunteman, 1989; Kachigan, 1991). As the input to MDS or PCA,sion, PCA linearly transforms an original set of variables into a
we used a 12& 128 correlation matrix, each element of which smaller set of independent (i.e. uncorrelated) variables that repre-
represented the correlation coefficient of the responses of the V&ent most of the information in the original set of variables. We
cells (averaged across trials, but not normalized) to a given pair ofised this technique to assess whether the V2 population response
the 128 stimuli. We used the correlation coefficient rather than thecould be adequately accounted for by a small number of response
coefficient of covariance, because the former is scale invariantpatterns. Composites of the loadings were constructed using the
measures response similarities independent of the absolute firingethod of Turk and Pentland (1991). Briefly, to construct the
rates, and is commonly used for this purpose (see Young &omposite for a given principal component, each stimulus was
Yamane, 1992; Oja, 1995; Simoncelli & Olshausen, 2001). rendered using a grayscale value that represented its loading on the

MDS plots the data so that the distances between the datgiven component, so that loadings of 1.0, 0, antlO resulted in,
points, in our case the stimuli, represents the similarity of therespectively, a stimulus that was white, neutral gray (i.e. back-
responses of V2 cells to the stimuli. MDS can be implementedground), or black in color. The stimuli were then averaged across
using many slightly different algorithms, all of which produce space so that the composite for a given principal component
qualitatively similar results (see Kruskal & Wish, 1978; Cox & represented the weighted average of the loadings on the individual
Cox, 1994); we used the classical algorithm (S-Plus routmd-  stimuli.
scalg, which uses spectral decomposition of the input matrix (see
Kruskal & Wish, 1978; Cox & Cox, 1994). The algorithm begins
with an arbitrary placement of the stimuli and iteratively shifts the Results
stimuli in order to reduce the distortion (or “stress”) between the
interstimulus distances and the original similarities. Some residuaTlhe diversity of V2 response profiles

stress is to be expected when reducing a high-dimensional datPhe response profiles of individual V2 cells were often complex
into a two-dimensional (2D) format. However, the algorithm finds P P P

the best representation of similarities with the least amount oﬁnd differed consideraply from one cell to t.he next, as illustrated
distortion, so that stimuli which elicit dissimilar responses are y the exemplar cells in Fig. 3 (also see Fig. 1 of Hegdé & Van

. S . .~~~ “Essen, 2000). The cell shown in Fig. 3A was sharply tuned for
dispersed from each other and the stimuli which elicit similar . .
shape. It responded maximally to the large right angle at 180 deg
responses are clustered together.

(82 spikegs, averaged across repetitiottsrd row). This response

was considerably larger than the sum of the responses to bars at
Analysis of MDS clusters 45 deg and 135 deg, suggesting a strongly nonlinear summation.
We used randomization analysis to determine whether th&he second most effective stimulus, a large acute angle at 270 deg

clustering of stimuli, if any, in a given MDS plot was significantly ( fourth row), elicited about two-thirds of the maximal response

nonrandom. The test statistic was tBeratio, which is directly (57 spikegs). All other stimuli, including the remaining right angle
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or acute angle stimuli, elicited less than one-eighth of the maximastimulus was the large acute angle at 180 deg (third row; 141

response (average response, 6 spi&es spikegs), but the cell responded well to many other angles,
Most V2 cells were considerably more broadly tuned than theintersections, arcs, and its preferred bar. The cell’s responses were

cell in panel A. For the cell shown in panel B, the most effective substantially modulated by the shape characteristics of these con-
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tour stimuli, such as the stimulus type (cf. acugeright angles), uli (mean responses, 0.36; range, 0.50—0.23). Also, larger contour
orientation (cf. large crosses at 0, 22.5, 45, and 67.5 deg), and sizgimuli were relatively more effective (mean response, 0.38) than
(cf. largevs small three-quarter arcs), indicating that the responseshe small contour stimuli (mean response, 0.27).
of the cell conveyed information about the shape characteristics of Together, the exemplar cells and the population response sug-
many of the contour stimuli. Most of the effective stimuli con- gest that the responses of V2 cells are modulated by many different
tained orientation components near the cell’s preferred orientatioshape characteristics. In what follows, we first quantitate the
(e.g. large tristar at 0 degdp row], large five- and six-armed stars degree to which the various shape characteristics of the stimuli
[rows 1-3, and the large obtuse angle at 270 defigUrth row], modulate the responses of individual V2 cells. We then study how
and the large one-quarter arc at 270 dégurth row]). However, V2 cells as a population represent the shape information.
the cell responded poorly to the large acute angle at O tgy (
row), even though it contained the same orientation components as
the cell's most effective stimulus. Individual V2 cells carry information about

The cell shown in Fig. 3C responded well to grating stimuli in Many shape characteristics
general, with the high-frequency polar gratinfpirth row) elic-
iting the maximal response (80 spike}, and 14 other grating Response modulation across all stimuli
stimuli, mostly at the lower spatial frequencies, eliciting at least 10 measure the extent to which the responses of individual V2
three-quarters of this response. Although the cell responded poorfge!ls were modulated by the stimulus set as a whole, we used two
to most contour stimuli (mean response of 17 spikeacross all indices, each addressing a different aspect of the cell’s response
contour stimuli), it responded relatively well to the large circle and Profile. To determine whether the modulation of the given cell’'s
three-quarter arcs (mean response of 48 spikés these five F€SPONSes across all 128 stimuli was larger than expected by
stimuli). Also, the cell responded well to many polar gratings ontrial-to-trial variations in response, we calculated its overall mod-
the one hand and to the large circle and three-quarter arc stimuli oflation index,OMI (see Methods). V2 cells had an averdgel|
the other, suggesting that curvature selectivity may have contribv@lue of 4.03, indicating that, on an average, the overall response
uted strongly to this cell's response profile. The cell in panel pof V2 cells was modulated about four-fold above the level ex-
responded maximally to a small five-armed star (63 spi&es pected from random (Fig. 5A). The response modulation was
second roy. However, many stimuli (16 grating stimuli and 41 significant (randomization analysi®, < 0.05) for about nine-
contour stimuli) elicited more than two-thirds of the maximal tenths of the cells (16380, 91%;filled bars in Fig. 5A). The
response of the cell, and the least effective stimulus, a large acuf®edian OMI value was 2.72, indicating that the responses were
angle at 180 degtfiird row), elicited 23 spikegs above back- modulated greater than 2.72-fold above random levels for half of

ground. Also, the cell generally responded better to small contouf€ Population.

stimuli than to their larger counterparts (cf. smadl large acute 10 measure the degree of selectivity for the most effective
angles and three-quarter arcs). stimulus, we calculated a stimulus selectivity ind&&(), given by
[1 — (Rmear/Roean], WhereReanis the average response of the cell
The population average response to all 128 stimuli andRyeaxis the response of the cell to its most

To gauge the response of V2 cells as a population to théffective stimulus. SSI values of 0.50 and 0.75 denote that the

stimulus set, we calculated the normalized average populatioféSPonse to the cell's most effective stimulus was, respectively,
response to each stimulus. Each cell’s responses to all 128 stimJivo and four times larger than the cell's average response to the
were normalized so that the cell’s responses to its most and th@limulus set as a whole. The exemplar cells shown in Figs. 3A and
least effective stimuli were 1.0 and 0, respectively, thereby ensur3D, for instance, hagSivalues of 0.93 and 0.32, respectively. The
ing that each cell contributed to the same extent to the populatioAVeragesSivalue of V2 cells was 0.69, indicating that the response
average. The normalized responses were then averaged acrossian average V2 cell to its most effective stimulus was about
180 cells. three-fold larger than its average response to all stimuli (Fig. 5B).

Fig. 4A shows the average responses of the population td he SSl values were poorly correlated with th@MI values
individual stimuli. The top four stimuli, each of a different subtype ('ssiom = 0.26), indicating that the two indices measured rela-
[including the preferred batgp row), Cartesian grating¢p row), tively independent aspects of the response profiles. The degree of
a concentric gratingt¢p row), and a large acute angle at 180 deg selectivity for the preferred stimulus as measured bySBéwas
(third row)] elicited similar responses (0.50, 0.50, 0.47, and 0.47 Significantly higher than chance (randomization test; 0.05) for
respectively). Nearly half the stimuli (3628, 44%), including about four-fifths of the cells (144.80, 81%filled barsin Fig. 5B).
nearly four-fifths of the grating stimuli (388, 79%), elicited more The results were qualitatively similar when sparseness (see Rolls
than three-quarters of the maximal response (:€0.375). The & Tovee, 1995; Vinje & Gallant, 2000; Friedrich & Laurent,
least effective stimulus for the V2 cell population, a small one-2001), instead 08S| was taken as a measure of the peakedness of
quarter arc at 0 degdp row), elicited nearly half of the maximal the response profile (data not shown).
response (0.23). Thus, the population average responses varied Altogether, the distributions of the two indices show that V2
over a relatively narrow range. In addition, all stimuli showed C€lls were able to convey significant shape information using a
substantial cell-to-cell-variation of response (Fig. 4B) (maximumdiversity of coding styles, varying from local coding to broad
SD [preferred bartop row], 0.30; minimum SD [small right angle tuning. Importantly, no pronounced clustering of tuning character-
at 0 deg,top row], 0.17). Together, these results indicate that noistics was evident by either index.
single stimulus was consistently effective or ineffective across the
population of V2 cells. Responses to gratings vs. contours

The population average responses demonstrate that V2 cells For many V2 cells, the response profiles to gratings and
were generally more responsive to the grating stimuli as a grougontours differed substantially from each other. For instance, the
(mean response, 0.44; range, 0.50—0.34) than to the contour stirexemplar cell shown in Fig. 3C responded well to, and was broadly
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A. Population Average

Fig. 4. The population response. (A) The normalized average response of all 180 V2 cells to the stimulus set. The maximum and the
minimum response from each cell were normalized to 1.0 and O, respectively, and averaged across all 180 cells. The resulting
population averages ranged from 0.5 to 0.23, according to the color scale shown at the bottom. (B) The cell-to-cell variation of the
population response, measured as the absolute (i.e. non-normalized) standard deviation of the normalized responses to each stimulus.

tuned for, grating stimuli as a class, but responded much morstimulus set, we carried out two analyses, one involving peak
selectively to contour stimuli. Conversely, the exemplar cell shownresponses and the other involving mean responses. Fig. 6A shows
in Fig. 3B was largely unresponsive to grating stimuli as a classthe peak response of each cell to contour stimuli (i.e. the response
but responded well to many contour stimuli. to the cell’s most effective contour) plotted against its peak grating
To determine the extent to which V2 cells as a populationresponse. For about two-thirds of the cells (1180, 66%), the
responded differentially to the grating versus contour stimuli in ourpeak contour response exceeded the peak grating response (the

A.
157
2 104
w
o
# 5
0 0 2 4 6 8 10 >  Fig. 5. Response of modulation across all 128 stimuli
Overall Modulation Index (OMI) for individual V2 cells. For each cell, the modulation
B of responses by the stimulus set as a whole was measured
using two different indices. The distribution of the re-
15 M sulting index values is shown here in histogram form.
(A) Overall modulation index (OMI). (B) The stimulus
E 10 selectivity index GS|). In either panel, thdilled bars
a represent those cells for which the response modulation as
%+ 5 measured by the given index response was significantly
above randomR < 0.05) as determined by the random-
ization of spike counts across stimuli (see Methods). The
0- 0.0 0.5 ) 1'0 cells withP > 0.05 are denoted bypen barsIn this and

. } s the subsequent figures, the exemplar cells in Figs:[3
Stimulus Selectivity Index (TSI) are indicated by the appropriate letters.
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cells below the diagongt this preference was statistically signif-
icant (one-tailed-test,P < 0.05, after Bonferroni correction) for

S | |® Mean Grak. > Mean Cont,, p<0.05 about one-third of these cells (4818, 36%, or 24% of the total;
| |4 Mean Cont. > Mean Grat., p<0.05 data not shown). For the remaining cells, whose peak grating
o No difference, p>=0.p5 response exceeded the peak contour respongé§6234%), the

preference was statistically significant for about one-thirg/628
29%, or 10% of the total). However, the greater incidence of
o contour-preferring cells may simply reflect a sampling bias, owing
to the fact that there were more contour stimuli than grating stimuli
- o (80 vs. 48).
We found more pronounced difference between the two stimu-
» lus classes of stimuli in the mean response analysis, which com-
A .
u® 0 g pared the responses of each cell averaged across the 48 grating
D stimuli to the responses averaged across the 80 contour stimuli. The
. B results are denoted by the plotting symbols in Fig. 6A. For nearly
LSO oS Y half of the cells (81180, 45%), the average grating response was
- ‘LA significantly larger (using a one-taileéeest) than the average con-
= tat o, 0% tour responseR < 0.05;filled square$, whereas average contour
responses significantly exceeded the average grating responses for
0 50 100 150 200 only about a quarter of the cells (4480, 24%;filled triangles).
Peak Responses to Contours (Hz) Nea_rly _o_ne-third of the cells (4480, 31%;open circle3 shoyved
no significant preference. The response of V2 cells to gratings was
on average 1.62-fold larger than the response to contour stimuli.
To compare the sharpness of tuning of V2 cells to grating
- versus contour stimuli, we calculated the sharpness of tuning index
:%;‘é :'{g}? p 3008 e O separately for the grating and the contour stim8ISg and SSk,
o No difference, ,E'; SL .05 - B respectively; see Methods). A great majority of V2 cells (AJEBD
Yoo 84%) were more broadly tuned to gratings than to contours (Fig. 6B;
2 EDC'@ s cells below thediagonal), and this difference was significant in
3?; e about half (47%) of the total populatio’®$E > SSk, random-
. ization testP < 0.05 after Bonferroni correction). By contrast, the
a4 tuning for the grating stimuli was sharper for only 16% of the cells
0 S . ‘* (29/180), and significantly so for only 7% of the total population.
] g‘ #, 5 b LA Together, these results indicate that V2 cells responded better on
[
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C e n average to the grating stimuli in our stimulus set, but were more
D:Oc;‘a .\ selective for the contour stimuli. The magnitude of this bias

s depends, of course, on the particular choice of stimuli and might be
D different (or even nonexistent) for other reasonable choices for
stimulus sets.

0.2
(@)

g Response modulation by stimulus size
Most V2 cells responded better to large contour stimuli than to

D:U 0.2 _ﬂ'_4 0.6 0.8 1.0 small contour stimuli (Fig. 4A; also see Figs. 3A & 3B). Aside
Stimulus Selectivity Index (SSI¢) from the differences in overall responsiveness, it is of interest to
know whether individual cells respond similarly to the large versus
tpse small version of each contour shape, that is, whether they show
panel. Thexandy coordinateof each cell denote theeakresponses of the %IZG invariance across the tv_vo sizes s_a_mpled. To address thls, ISSue,
cell to the contour and the grating stimuli, respectively. The plotting we calculated the correlation coefficient _betvyeen the Ce”S_
symbolsdenote the results of a one-tailédtest comparing thenean ~ '€SPONSes to Igrge versus small contour stimuli. Because the ISsue
responses of each cell to contows gratings (and vice VersaFi”ed IS pl’lmarl|y Of IntereSt fOI‘ Ce||S that were SUbStantla”y reSpOﬂSIve
squaresdenote cells for which the responses to the 48 grating stimuli werelo both large and small contours, we identified a subset of 77 cells
significantly larger than the responses to the 80 contour stirRufi 0.05). (filled barsin Fig. 7) meeting this criterion (see legend to Fig. 7).
Filled trianglesdenote cells for which the responses to the contour stimuliThe average correlation for this subgroup of 77 cells was 0.51,
were larger than the responses to the gratifgs:(0.05), andopen circles  sybstantially greater than the value of 0.32 for the population as a
denote cells which showed no preferenéex 0.05). (B) The stimulus  \yhole, These results suggest that many, but not all, V2 cells show
selectivity indices for the contour and the grating stim@B¢ andSSk ynsjderable size invariance for the contour stimuli tested.
indices, respectively) are plotted against each other for each cell. Outlier We also measured the response modulation within each of the

cells with index values of>1.0 were normalized to 1.@illed triangles 14 stimul bel ing featio-based dulation indi
denote the cells for which tHeSt values were significantly larger than the stimulus subclasses using inéatio-based moduiation indices.

SSk values (randomization tes?,< 0.05 after Bonferroni correction). The 1 N€S€ analyses showed that many V2 cells conveyed information
cells for whichSSk values were significantly larger than tSSE values ~ about each of the shape characteristics that varied within each
(P < 0.05) are shown afilled squares The cells which did not show a  Stimulus subclass, including orientation, spatial frequency, or size
significant preferenceR > 0.05) are shown aspen circles of various stimuli (data not shown).

Stimulus Selectivity Index (SSI¢)
04
%o

Fig. 6. Comparisons of V2 cell responses to contear grating stimuli.
(A) Analyses of both peak and the mean responses are represented in t
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Il Responsive to both large and small contours Patterns of response correlation: MDS analysis
] Unresponsive to large andfor small contours The MDS plot derived from the correlation matrix reveals three
large clusters, each shown in a different color in Fig. 9. The 48
grating stimuli were grouped in a single, well-defined cluster
(stimuli shown inred). Thus, grating stimuli as a class elicited
15 similar (i.e. correlated) responses from V2 cells, consistent with
the results described earlier (see Fig. 6). The 80 contour stimuli
were more dispersed, but were identifiable as two relatively loose
clusters. One cluster (stimuli shown gneer) contained 17 large
angles and arcs (including all the large right angles, semicircles,
circle, and three-quarter arcs and three of the four large acute
angles); the other cluster (stimuli shown litue) contained the
remaining contour stimuli. In addition, the arrangement of stimuli
within each cluster does not appear random. Within the three main
clusters, many smaller subclusters of stimuli were discernible,
such as the large three-quarter arcs within the green cluster, and
-0.25 0.0 0.25 0.5 0.75 1.0 small intersections within the blue clustedashed ellipsesn
- Fig. 9). Within the grating stimulus cluster, radial gratings were
Correlation Between Responses generally segregated from the concentric gratings.

to Large vs. Small Stimuli To assess the statistical significance of these three subjectively
identified main clusters, we calculated pairwise distances between
histogramshows the distribution of correlation coefficients comparing the a!l the stimuli in the MDS plot. We then compared the .average
responses of each cell to the largesmall contours. Thélled barsdenote d|§tance betyveen clusters to the average distance W'th'n clusters
cells which conveyed significant information about both large and smallusing the ratio (@® = MS,etweerd MSuitnin, WhereMSpeqweenis the
contours, by virtue of passing five separate randomization tesis<at ~Mmean-squared distance, or variance of distances, between the three
0.05. The tests measured response modulation across (1)viargmall clusters andMS,inin is the average variance of within-cluster
contours, (2) large contours alone, (3) small contours alone, and comparedistances). Th® ratio of 403 for the MDS plot shown in Fig. 9

(4) evoked responsegs background responses to large contours, andwas highly significant® < 0.001, randomization test).
(5) evoked responses. background responses to small contours. The first
three tests used the ratio as the test statistic; the last two tests used the
t statistic. Open barsrepresent cells witl? > 0.05 for one or more of
the tests.

10

# Cells

Fig. 7. Correlation of responses to largs small contour stimuli. The

Relative contributions of different patterns of

correlation: Principal components analysis

We used PCA to assess the relative contributions of different
correlation patterns evident in the MDS analysis. The response
variation accounted for by the ten most influential principal com-
ponents is shown in Fig. 10A. The first component accounted for

Population-wide patterns of response 43% of the variation in the data, the first two accounted for 69%,

From the results presented thus far, it is unclear whether thand the first eight accounted for 90% of the response variation.
response profiles of V2 cells are mutually unrelated or whethefThus, a small number of response correlation patterns (principal
there are meaningful similarities among the response profiles o€omponents), each accounted for a much greater proportion of the
various V2 cells. We therefore studied the V2 population respons@opulation response than the 0.78% that would be expected by
for global patterns of response across all cells. To do this, wehance (given that there were 128 principal components associated
constructed a 128 128 correlation matrix of the population with the 128 x 128 stimulus input matrix).
response, each element of which represented the correlation coef- Fig. 10B shows the loadings of the stimuli on the first two
ficient of the responses of all V2 cells to a given pair of the 128principal components. The loadings of individual stimuli on a
stimuli (see Fig. 8 for details). For example, two geometrically given principal component represent the extent to which the pop-
similar spirals (stimuli 44 and 48 in Fig. 2) elicited strongly ulation responses to a given stimulus is correlated with (or, equiv-
correlated responses across the population (correlation coefficiemtently, is influenced by) the given component. The pattern of
r = 0.72), as shown in Fig. 8A, whereas two geometrically correlated and anticorrelated loadings on the two components
disparate stimuli (spiral 4¥s. bar 49) elicited poorly correlated jointly identify the three stimulus clusters identified by MDS
responsesr(= —0.08) as shown in Fig. 8B. Other stimulus (Fig. 9), in that the first component separates the blue cluster from
pairings, such as the arc (stimulus 114) and the chevron (stimulughe remaining stimuli, and the second component segregates the
98) shown in Fig. 8C had intermediate correlation values=(  green cluster from the other stimuli (also see legend to Fig. 10B).
0.12). These correlation values were used to generate an overdlhis was confirmed by ordination of the components (see Sneath
correlation matrix, which is shown in its entirety in Fig. 8E and for & Sokal, 1973), in which the loadings of the stimuli of the two
a small portion in Fig. 8D in order to illustrate the contributions of components were plotted against one another. The clusters of the
the exemplar correlation values in panels A-C. ordinated plot were similar, and the cluster memberships identical,

We analyzed this correlation matrix using both multidimen- to the MDS plot shown in Fig. 9 (cophenetic correlation, 0.96; data
sional scaling (MDS) and principal components analysis (PCA).not shown).
The MDS analysis reveals clusters of stimuli that tend to elicit
correlated responses across the population. The PCA analysis Stimulus similarities underlying response correlations
provides insights regarding the dimensionality needed to account Together, the PCA and MDS analyses elucidate some of the
for the diversity of response profiles in the population. similarities among the stimuli that underlie the correlated re-
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Fig. 8. Constructing the correlation matrix. Panels A—C each show the responses of V2 nelotshs$o( selected pairs of stimuli

plotted against each other. The responses of exemplar cells in Fig. 2A-2D are indicateoMmswhere possible. Thinesrepresent

the best-fitting regression lines; the correlation coefficieista measure of deviation of the responses from this line. Panels E and D
show the entire 128& 128 correlation matrix and a magnified portion thereof, respectively, plotted accordinggmffseale on right

In all panels, stimuli are numbered and oriented as in Fig. 2. To construct the correlation matrixathe for each possible pair of

stimuli was calculated and assigned to the corresponding element of the correlation destird arrows The elements along the
diagonal from lower left to upper right represent the correlation of the responses to a given stimulus with themseiveD).

The matrix is symmetrical about this diagonal, sim€ej) = r(j,i) for any two stimulii andj. Note thatr values are low as long as

the overall correlation between the responses to the two stimuli is low (panels B and C), even if the responses of subsets of cells are
correlated to a greater degree (panel B).

sponses. The response correlations which lead to the clustering of The loadings of the contour stimuli are correlated with stim-
grating stimuli with one another, and apart from the contours, maywlus size along the second principal component (Fig. 10B, panel
include contributions from low-level stimulus characteristics like 2). Similar results were obtained when MDS or PCA were
mean luminance, which differed between the two sets of stimulirepeated using only the responses to contour stimuli (see be-
(see Methods), or from higher order similarities of shape, or fromlow), confirming that stimulus size contributes substantially to
both. However, mean luminance is unlikely to fully account for thethe second principal component. The pronounced differences
response correlations, since many contour stimuli load similarly tdoetween the loadings of intersections versus those of most of the
the gratings on both the first and the second principal componentsarge angles and arcs along the second component suggests that
Instead, the loading patterns suggest that higher level shape chahe presence or absence of contour junctions is an important
acteristics contribute substantially to the response correlationfactor as well.

between gratings and some contours. For instance, many large

semicircles, three-quarter arcs, and angles load similarly to the Analysis of responses to contours and gratings alone

gratings on the first component, suggesting that curvature or We analyzed the responses to contour and to grating stimuli
orientation differences contribute to this principal component.  separately from each other using MDS and PCA. The MDS of
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Fig. 9. Metric multidimensional scaling (MDS). Using MDS, the 128 stimuli were plotted so that stimuli which elicited similar
responses from the V2 cell population are clustered together and the stimuli which elicit disparate responses are dispersed
correspondingly father apart. The two axes represent arbitrary dimensions used by MDS. Three clusters of stimuli, denoted by arbitrary
colors,red, green andblue, were identified based on their spatial separation from each othedagied ellipsedenote two potential
subclusters. The preferred bar is denoted byattrew.

contour responses produced two clusters which were very simifive (panels 1, 2, 5, 6, & ¥, indicating that similarity of

lar to the two clusters of contour stimuli (i.green and blue curvature was an important determinant of the population re-
clusters) in Fig. 9 (cophenetic correlatia, 0.93; data not sponse to contour stimuli. Interestingly, panels 5 and 6 were
shown). The PCA of the contour responses (Fig. 11) revealegach dominated by arcs of opposite polarity (P down in
stimulus similarities not readily apparent from the PCA of grat- panel 5; leftvs right in panel 6). Angles and intersections are
ing and contour responses combined. Seven principal compalso important contributors, given their relative prominence in at
nents exceeded the contribution to response variation expectddast two of the top seven componengzgfels 3& 4).

by chance &rrow and dashed linein Fig. 11A) and together The MDS of grating responses alone resulted in a single cluster
accounted for 88% of the response variation. Fig. 11B illustratesimilar to the grating cluster (i.eed cluste) shown in Fig. 9

the loadings of each of these components in composite form(cophenetic correlatione, 0.98) and did not reveal any obvious
where the stimuli were weighted according to their loading on asubclustering among the grating stimuli (data not shown). Simi-
given component and overlaid atop each other (see Methods arldrly, PCA of grating responses failed to reveal any pronounced
also Turk & Pentland, 1991). The first principal component subpatterns of response similarity among the grating stimuli (not
(panel BJ), which accounted for more than half of the total shown). Altogether, the response similarity patterns within the
response variance, had positive loadingsight pixel9 domi- grating and contour stimuli were consistent, whether assessed
nated by bar and angle stimuli and negative loadindar  separately or together by MDS or by PCA. This suggests that the
pixles) by circular and arc stimuli. Of the top seven principal patterns were intrinsic to the population responses, and not an
components, curvature was a predominant shape characteristic @mtifact of a particular analysis procedure.
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Fig. 10. Principal components analysis (PCA). (A) Proportion of the response variation accounted for by the top ten principal
components. The height of each bar denotes the percentage of the response variation accounted for by the given principal component.
The numbers atop the bars denote the cumulative percentages of the response variation accounted for by successive principal
components. Tharrowheadand thedashed linedenote the expected level of response variation accounted for by each principal
component if the population response were random. (B) The loadings of individual stimuli on the top two principal components. The
color of a given stimulus represents its loading on, or its correlation with, the given principal component according to the corresponding
linear color scale at the bottom, whered denotes positive correlation ardue represents anticorrelation. Note that the stimuli
positively correlated with the first principal component (panel 1) mostly constitute the blue cluster, and the anticorrelated stimuli belong

to the remaining two clusters, in Fig. 9. Note also that the stimuli anticorrelated with the second principal component (panel 2)
constitute the green cluster in Fig. 9.

Shape representation among subsets of V2 cells the original MDS plot generated using all 180 cells. The average
The specific pattern of response correlations revealed by theophenetic correlation{(SD) for the 16 repetitions at each of the
MDS analysis might in principle have been dominated by asample sizes is shown in Fig. 12. When only ten cells were used,

subpopulation of V2 cells or, alternatively, may reflect character-the resulting MDS plots differed substantially from the original
istics that are widely distributed across the V2 population. TOMDS plot generated using all 180 cells (mean 0.36; SD, 0.15).
distinguish between these two scenarios, we studied the extent fthe correlation with the original MDS plot increased rapidly to
which randomly chosen subsets of V2 cells exhibited the sameorrelation values of 0.5 for 20 cells (SD 0.14), 0.68 for 45 cells,
response correlation patterns as the overall population. and 0.86 for 90 cells (SD 0.03). Thus, the response similarities

We randomly sampled the 180 cells at 17 different sample sizewere largely independent of the particular subset of V2 cells
(10-170 cells per sample, in increments of ten cells), generated amalyzed, as long as a moderate number of cells were sampled,
MDS plot using each sample, and used cophenetic correlation (seedicating that the underlying response similarities were a wide-
Methods) to asses the similarity between the given MDS plot andpread property of V2 cells.
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Fig. 11. PCA of the population response to the contour
stimuli. (A) Proportion of the response variation ac-
counted for by the top ten principal components. The
height of each bar denotes the percentage of the response
variation accounted for by the given principal component.
The numbers atop the bars denote the cumulative percent-
ages of the response variation accounted for by successive
principal components. Therrow and thedashed linéboth
denote the expected level of response variation accounted
for by each principal component if the population re-
sponse were random. (B) The loadings of individual
stimuli on the top seven principal components in compos-
ite form. The numbersat top left of each composite
denotes corresponding principal component. To create a
given composite, each contour stimulus was drawn ac-
cording to its loading on the given component according
to the gray scale abottomusing arbitrary stimulus di-
mensions (preferred bar length and widths of 1.0 and 0.1
receptive-field diameters, respectively). The resulting 80
gray scale images were averaged across all pixels, so that
the gray value of a given pixel denotes its weighted
average loading on the given component. Neutral gray
(background color) represents an average loading of zero,
and brighter and darker shades of gray represent positive
and negative average loadings, respectively. See Methods
for details.

Fig. 12. Shape representation in random subsets of V2
cells. MDS plots were generated using random V2 cell
samples of systematically varying sizes. The correlation
of each such plot to the original MDS plot in Fig. 8 was
measured using cophenetic correlation. The mean cophe-
netic correlation coefficientsc (averaged from 1®rep-
etitions for each sample size) are plotted here as a function
of sample sizeError bars represent standard deviations.
The asteriskdenotes the average value (also from 19
rounds of randomization) that resulted when all 180 cells
were used, but the response similarities were randomized
among the stimuli. Thec values calculated from using
only the 108 cells from animal #1, only the 11 cells from
animal #2, or only the 61 cells from animal #3 are also
indicated (lots). The observedc value from each animal

is indistinguishable from thec value expected from the
number of cells contributed by that animal (two-tailed
t-tests,P > 0.05, not shown).
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Discussion Previous studies have suggested that neuronal populations in
macaque inferotemporal cortex encode faces along a small number

Role of V2 cells in shape analysis and of psychophysically salient dimensions (Young & Yamane, 1992).

image segmentation There is also evidence that major aspects of population responses

- L in other parts of the brain can be captured in a small number of

Our results indicate that the responses of individual V2 cells . . .

convey information about many characteristics of visual contoursresF)Onse dimensions related to the angular eye position or head
y y direction (McFarland & Fuchs, 1992; Taube, 1998). Our results

including geometric shape (curvature, intersections, and angles) as . : .
. - . S suggest that an analogous low-dimensional population representa-
well as size and orientation. Many individual V2 cells also convey

. . L tion of shape characteristics may be used in early visual cortical
some information about textural characteristics, insofar as they are

X . . . : rocessing stages.
s_electlve for non-Cartesian or sinusoidal gratings. These observg It is naturally of interest to ascertain whether the dimensional-

Ey with which complex shapes are represented varies markedly at

spatially segregated subregions with different preferred orienta-: . : . ; o
tions (Anzai & Van Essen, 2001, 2002). different levels of the visual hierarchy. Insights regarding this issue

In the present study, the population varied widely in terms Ofshould be attainable by systematically analyzing multiple visual

o . L ) areas using a large but stereotyped family of shapes. At the level of
selectivity for various shape characteristics. Also, the population as__. - .
: . . etinal ganglion cells and lateral geniculate nucleus (LGN) neu-
a whole shows only modest biases in terms of responsiveness 10 . . . . .
. . ons, it seems likely that the dimensionality would be lower than
particular subsets of shapes. This suggests that V2 cells sample t

- LT L at we encountered in V2, because neurons with stereotyped
space of grating and contour stimuli widely and are not specialize o o
. - center-surround receptive fields should respond similarly to many
for analyzing a narrow subset of shape characteristics of contou

S . ; .
L . . . ... different shapes, and a high fraction of response variance would be
and/or textures within our stimulus set. This apparent diversity in pes, 9 b

analysis strategies may reflect the diversity of perceptuall rele-Captured by afew principal components. Whether there are changes
Y 9 Y y ol p P y in dimensionality at different levels of the cortical hierarchy will

vant shape cues in natural images (Cho et al., 2000; Geisler et aL.),

2001; Sigman et al., 2001; also see Field, 1987; Simoncelli & = more challe_nglng to d(_atermlne, f_or technical reasons _that In-
clude the large interareal differences in average receptive-field size
Olshausen, 2001).

) o . . and the difficulty of selecting stimulus sets that are effective in
Besides its involvement with monocular shape cues, V2 is . . . . . .
spanning a large fraction of the relevant stimulus dimensions in

engaged in the analysis of several other low-level dimensions
each area.

including stereoscopic disparity, color, and motion (see Van Essen S, . . . .
' ! . Another intriguing issue is whether the dimensionality of the
& Gallant, 1994; and Roe & Ts'o, 1997 for a review). That V2 guing o .ty
. . _gensory representation changes significantly over the time course
should be engaged in such a broad spectrum of physiologica .
: : . . " ) of neural responses. For example, in the vertebrate olfactory
analyses is consistent with its hierarchical position as the primar . ; o
ystem, the mitral cell population response is initially low-

recipient of inputs from V1 and the source of projections to : . - .
. . - dimensional, but becomes decorrelated and higher in dimension-
numerous visual areas in both the ventral and dorsal processin

streams (Desimone & Ungerleider, 1987; Felleman & Van Esseng'ty during the responses to sustained odorant stimuli (Friedrich

' . ) . & Laurent, 2001). This may allow the generation of an initial
1991). It also fits with computational arguments that early visual . ; . . .
LT . . . coarse-grained representation, useful for rapid stimulus classifi-
processing involves multiple states of image analysis to generate_.. : ) .
; - = cation, followed by a more slowly developing finer-grained
generic shape representations (Marr, 1982; Yuille & Ullman, 1995). . ' . S
representation useful for finer-grained discrimination tasks. In
visual cortex, time-dependent changes in the selectivity of neu-
ronal responses occur in V1 and V2, suggesting that increases in
time-dependent dimensionality may occur for visual represen-
The fact that a modest number of principal components account fatations as well (Menz & Freeman, 2003; Hegdé & Van Essen,
most of the response variation in the population response indicatasmpublished data)
that V2 cells can represent most of the shape information in our
particular stimulus set by a smaller number of basis functions than
would be required if the population responses were highly decorf\cknowledgments
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