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Abstract

Contours and surface textures provide powerful cues used in image segmentation and the analysis of object shape.
To learn more about how the visual system extracts and represents these visual cues, we studied the responses of
V2 neurons in awake, fixating monkeys to complex contour stimuli (angles, intersections, arcs, and circles) and
texture patterns such as non-Cartesian gratings, along with conventional bars and sinusoidal gratings. Substantial
proportions of V2 cells conveyed information about many contour and texture characteristics associated with our
stimuli, including shape, size, orientation, and spatial frequency. However, the cells differed considerably in terms of
their degree of selectivity for the various stimulus characteristics. On average, V2 cells responded better to grating
stimuli but were more selective for contour stimuli. Metric multidimensional scaling and principal components
analysis showed that, as a population, V2 cells show strong correlations in how they respond to different stimulus
types. The first two and five principal components accounted for 69% and 85% of the overall response variation,
respectively, suggesting that the response correlations simplified the population representation of shape information
with relatively little loss of information. Moreover, smaller random subsets of the population carried response
correlation patterns very similar to the population as a whole, indicating that the response correlations were a
widespread property of V2 cells. Thus, V2 cells extract information about a number of higher order shape cues
related to contours and surface textures and about similarities among many of these shape cues. This may reflect an
efficient strategy of representing cues for image segmentation and object shape using finite neuronal resources.

Keywords: Extrastriate cortex, Form processing, Contour analyses, Principal components analysis, Surface texture

Introduction

Natural visual scenes are typically very complex, while the neural
resources of the visual system are finite, even with a billion or
more neurons in the visual cortex. The visual system must extract
and represent visual information within these computational con-
straints (see Marr, 1982; Osherson et al., 1995).

One strategy the visual system uses is to exploit information
about surface textures and object boundaries, or contours, as cues
to image segmentation and object shape. For example, in the image
shown in Fig. 1, the curved contours, smooth and glossy curved
surfaces and, in many cases, the star patterns at the tip help
distinguish the berries from each other and from the other objects
in the image. The manner in which berries occlude one another
helps characterize local depth relationships. The angles between,
and the intersections of, the stalks and leaves offer cues to their
shape and spatial configuration. Psychophysical and theoretical
studies indicate that the visual system indeed uses such cues in

image segmentation and object recognition (see Grossberg, 1987;
Wilkinson et al., 1998; Geisler & Super, 2000).

Recent neurophysiological studies indicate that many charac-
teristics of contours and surfaces are analyzed in early visual areas
V1 and V2. Spatial characteristics known to be represented in both
in V1 and V2 include selectivity for orientation, spatial frequency,
length, and luminance contrast (for overviews, see Van Essen &
Gallant, 1994; Roe & Ts’o, 1997). Selectivity for a number of
additional spatial characteristics emerge or become more promi-
nent in V2. In particular, we have previously reported that many
cells in V2 are preferentially responsive to complex contours,
including angles, intersection, arcs, or circles, or to non-Cartesian
(hyperbolic or polar) grating patterns (Hegdé & Van Essen, 2000).

In the present study, we have investigated how information
about the characteristics of contours and gratings is represented in
V2. We carried out two sets of analyses, one at the individual cell
level and another at the population level. The first set of analyses
was aimed at quantitatively characterizing how individual V2 cell
responses vary across the overall stimulus set and by specific
stimulus characteristics (shape, orientation, and size for contours;
spatial frequency and orientation for gratings). This information
provides useful insights into the diversity of response profiles
among V2 cells and about the degree to which individual cells help
represent different stimulus attributes. In the second set of analy-
ses, we used metric multidimensional scaling (MDS) and principal
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components analysis (PCA) to quantify the degree to which V2
cells as a population represent similarities between different stim-
uli. These methods provide an objective strategy for identifying
higher order shape characteristics extracted by a given population
of neurons (see, e.g. Young & Yamane, 1992). In addition, ana-
lyzing the extent to which each principal component accounts for
the overall response variation provides an objective basis for
assessing the dimensionality of the neural representation (Young &
Yamane, 1992; Field, 1995; Seung & Lee, 2000). Our analyses
indicate that a relatively small number of principal components in
V2 account for a high proportion of the response variance associ-
ated with complex shapes presented within the classical receptive
field.

Methods

Surgical and recording procedures

The responses of single units from area V2 were recorded in
awake, fixating macaque monkeys using standard procedures as
described previously (Hegdé & Van Essen, 2000). Briefly, three
adult male macaques (twoMacaca mulattaand oneMacaca
fascicularis) were used in this study. Prior to fixation training,
each animal was implanted with a headpost, a scleral search coil,
and an acrylic cranial patch using sterile surgical procedures. After
the animal was fully trained in the fixation task, a small craniot-
omy (5 mm in diameter) was made through the acrylic patch over
the recording site, and a recording chamber was mounted over the

craniotomy. Neurophysiological recording was carried out using
epoxy-coated tungsten electrodes (A-M Systems, Carlsborg, WA)
with initial impedances of 3–5 MV (at 1 kHz) inserted transdurally
into the cortex. All animal-related procedures used in this study
were reviewed and approved in advance by the Washington Uni-
versity Animal Studies Committee.

Stimuli

The stimulus set consisted of 48 grating stimuli and 80 contour
stimuli (Fig. 2). The grating stimuli consisted three subclasses of
stimuli: (1) sinusoidal gratings, (2) hyperbolic gratings, and (3)
polar (concentric and radial) gratings. The orientation and0or the
spatial frequency of the gratings (or the concentric and the radial
frequency, in case of polar gratings) varied systematically within
each subclass (see Fig. 2).

The contour stimuli consisted of ten subclasses of stimuli,
within each of which the stimuli varied in orientation and size (and
also in shape in the case of subclass #4): (1) bars; (2) 3-way
intersections (tristars); (3) crosses; (4) 5- and 6-armed stars, plus
circles; (5) acute angles; (6) right angles; (7) obtuse angles; (8)
one-quarter arcs; (9) semicircles; and (10) three-quarter arcs. The
large contour stimuli were matched in size to the cell’s preferred
bar length (determined qualitatively during receptive-field map-
ping), with the exception of large obtuse angles and one-quarter
arcs, which were reduced by 50% to ensure that they stayed within
the classical receptive field. In all cases, the small contour stimuli
were half the size of the large contours.

Fig. 1. A natural visual image. Contours and surface textures in the image provide useful cues to object shape and help segment the
image into visual objects. The berries are characterized by their curved outlines and smooth surfaces. The stalks and leaves have
relatively straight outlines and characteristic angles and intersections between the outlines. The pattern of occlusions of the contours
and surfaces provide cues to the relative depth of the berries, stalks, and leaves. How does the visual system extract and represent these
shape cues?
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Fig. 2. The stimulus set. The stimulus set consisted of 128 stimuli, 48 of which were gratings, and the remaining 80 were contour stimuli. (A) The grating stimuli included 12
sinusoidal gratings, 12 hyperbolic gratings, and 24 polar gratings. (B) The 80 contour stimuli included bars, tristars, crosses, stars, acute angles, right angles, obtuse angles,
one-quarter arcs, semicircles, and three-quarter arcs and circles. For the purposes of some of the analyses in this study, the stimuli were numbered sequentially from 1 through 128
(grating stimuli from 1 through 48, and the contour stimuli from 49 through 128) as indicated by thenumbersabove and below each column of stimuli.
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As noted in the Introduction, our stimulus set was designed to
explore the selectivity of V2 cells for a wide but obviously
nonexhaustive set of low- and intermediate-level form cues. The
grating stimuli probe the selectivity for conventional spatial fre-
quency and orientation (sinusoids), as well as more complex
textural characteristics (non-Cartesian gratings) which the visual
system may use as basis functions for surface representation
(Perona, 1991; Eagelson, 1992; Wilkinson et al., 1998; also see
Bergen, 1991; Gallant et al., 1996). The contour stimuli were
chosen to help probe the selectivity for conventional orientation
(bar stimuli), along with selectivity for the angles, intersections,
orientations, and curvature of visual contours, which may play an
important role in image segmentation and object recognition
(Rogers-Ramachandran & Ramachandran, 1997; Geisler & Super,
2000; Geisler et al., 2001; Sigman et al., 2001). Our choice of the
grating and the contour stimuli was also motivated in part by
previous reports of selectivity for these stimuli in area V4 (Gallant
et al., 1993, 1996; Pasupathy & Connor, 1999), which raised the
question of whether the selectivity for these stimuli arosede novo
in V4 or whether cells in lower areas of the visual hierarchy like
V2 also showed selectivity to these stimuli. Practical consider-
ations about the size of the stimulus set did not allow us address
many other important shape cues (e.g. disparity, motion, etc.), and
obliged us to sample many important shape characteristics (e.g.
curvature) only sparsely.

Visual stimulation and recording

Single V2 cells were isolated based on both the shape and the
amplitude of the waveform using a window discriminator (Bak
Electronics, Germantown, MD). In most cases, we were able to
isolate and maintain the waveform under study so that all and only
the spikes of the given waveform fell within the window. In the
small number of cases where this was not possible, the isolation
window was set to minimize contamination, even at the expense of
excluding some spikes of the intended waveform. The cell’s
receptive-field boundaries were mapped using mouse-driven bar
and grating stimuli on the computer’s monitor. The cell’s preferred
bar parameters, including preferred length, width, color, and ori-
entation, were also determined. We tested all cells with mappable
receptive fields which met the isolation criteria described above.
Prior to recording from the cell, the stimulus set was reoriented
according to the cell’s preferred orientation (see legend to Fig. 2).
The line width of contour stimuli was set at the cell’s qualitatively
determined preferred bar width. The grating stimuli had a spatial
frequency of 2, 4, or 6 cycles per receptive-field diameter and
a Michelson contrast of 1.0. All stimuli were presented in the
cell’s preferred color, selected during the manual mapping from a
palette of seven colors with varying luminances (red, 1.18 cd0m2;
green, 5.13 cd0m2; blue, 0.51 cd0m2; aqua, 5.70 cd0m2; pink,
1.82 cd0m2; yellow, 7.02 cd0m2; and white, 7.76 cd0m2; all
measured using Tektronix J17 photometer, Beaverton, OR). For all
cells, the stimuli were presented against the same uniform gray
background, the luminance of which was set at 3.71 cd0m2 to
maximize fixation performance of the animal and minimize light
adaptation by the cells (see Wandell, 1995). This meant that
both luminance and stimulus-background contrast varied from
one cell to the next, depending on the preferred color. The
proportion of cells which preferred colors with lower versus
higher luminance than the background did not significantly dif-
fer from that expected from chance (two-tailed binomial proba-
bility test, P . 0.05).

Each stimulus was presented in each of three jitter positions
centered 12.5% of the receptive-field diameter away symmetri-
cally around the receptive-field center. Stimuli were presented
sequentially for 300 ms each with a 300-ms interstimulus interval
within the classical receptive field while the animal fixated within
a window of 0.5-deg radius for a liquid reward. Up to six stimuli
were presented per trial in this fashion. Only the data from the
trials throughout which the animal maintained fixation within the
fixation window were used in this study. A total of 196 cells were
recorded, 122 from animal #1 and 63 cells from animal #3.
Recording from animal #2 was discontinued after 11 cells because
of poor fixation performance.

Analysis of data

Data analyses were carried out using the statistical utility S-Plus
(Statsci, Inc., Seattle, WA) or custom-written C language software.
The response to each stimulus was averaged from the net firing
rate from 12 repetitions of the stimulus, with four repetitions at
each jitter position (9 repetitions, with three repetitions at each
jitter position, for 62 cells). The net firing rate was calculated for
each presentation of the given stimulus by subtracting the back-
ground rate from the corresponding visually evoked response. The
background firing rate was calculated using a 80–100 ms window
(mean, 94 ms; median, 95 ms) immediately preceding the stimulus
onset. The evoked response was calculated using a 80–285 ms
time window (mean duration, 169 ms; median, 150 ms) starting
20–80 ms after the stimulus onset (mean onset, 27 ms, median,
30 ms), during which the overall firing rate of the cell (across all
repetitions of all stimuli) remained above background levels. Each
cell included in this study had at least one stimulus for which the
evoked response differed from the background response at a
significance level ofP , 0.05 (two-tailedt-test with Bonferroni
correction for multiple comparisons). Of a total of 196 cells
recorded from the three animals, 180 cells (108 cells from animal
#1, 11 cells from animal #2, and 61 cells from animal #3) passed
this test and were included in this study.

Tests of significance
Conventional parametric tests of significance were used where

appropriate. In most cases, however, we used randomization analy-
sis. A test of significance using randomization consists of deter-
mining whether the value of a user-defined test statistic calculated
from the actual data differs significantly from the distribution of
the same test statistic calculated from randomized data (see Manly,
1991 for an overview). For each test, an appropriate test statistic
was first calculated using the actual neural response data. The data
were then randomized in a manner appropriate for the given test,
and the test statistic was recalculated using the randomized data.
The randomization process was repeated 106 times (103 times in
case of MDS analyses). The proportion of times the randomized
test statistic exceeded the actual test statistic constituted the one-
tailed probabilityP that the actual test statistic was significantly
greater than random.

In cases involving multiple comparisons, we adopted a strin-
gent approach of using the Bonferroni correction (a 5 0.050n,
wherea is the probability of Type I error andn is the number of
comparisons; see Huberty & Morris, 1989; also see Savitz &
Olshan, 1995; Thompson, 1998).

Indices of response modulation
Two sets of indices were used to characterize various aspects of

stimulus selectivity of V2 cells. In either case, larger values of a
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given index represented correspondingly greater stimulus selectiv-
ity by that measure. One set, themodulation indices, measured the
modulation, or variation, of a given cell’s responses across a given
subset of stimuli above random noise levels using the conventional
F ratio. To calculate a given modulation index, we first calculated
theF ratio of the cell’s responses to the given set of stimuli, given
by F 5 MSbetween0MSwithin, where MSbetween is the stimulus-to-
stimulus variance (or, equivalently, the between-stimulus mean
squares), and theMSwithin is the average trial-to-trial variance (see
Snedecor, 1934; Brase & Brase, 1995). We next randomized the
responses across the stimuli and recalculated theF ratio. The value
of a given modulation index was defined as theF ratio calculated
from the actual data divided by the averageF ratio from the
randomization rounds. The various modulation indices differed
from each other only in terms of the stimuli across which the
response modulation was measured.

The second set, thestimulus selectivity indices(SSI), mea-
sured the peakedness of the cell’s response profile (i.e. responses
of the cell to a given [sub]set of stimuli) and had the general
form [1 2 (Rmean0Rpeak)], whereRmeanis the average response of
the cell to the given subset of stimuli andRpeak is the response
of the cell to its most effective stimulus from among the given
subset of stimuli. The various stimulus selectivity indices differed
from each other only in terms of the stimuli involved.

Analysis of response correlations
To analyze patterns of response correlation across the popula-

tion, we used MDS and PCA. Both are well-established and widely
used multivariate statistical techniques for analyzing complex,
high-dimensional data (for overviews, see Kruskal & Wish, 1978;
Dunteman, 1989; Kachigan, 1991). As the input to MDS or PCA,
we used a 1283 128 correlation matrix, each element of which
represented the correlation coefficient of the responses of the V2
cells (averaged across trials, but not normalized) to a given pair of
the 128 stimuli. We used the correlation coefficient rather than the
coefficient of covariance, because the former is scale invariant,
measures response similarities independent of the absolute firing
rates, and is commonly used for this purpose (see Young &
Yamane, 1992; Oja, 1995; Simoncelli & Olshausen, 2001).

MDS plots the data so that the distances between the data
points, in our case the stimuli, represents the similarity of the
responses of V2 cells to the stimuli. MDS can be implemented
using many slightly different algorithms, all of which produce
qualitatively similar results (see Kruskal & Wish, 1978; Cox &
Cox, 1994); we used the classical algorithm (S-Plus routinecmd-
scale), which uses spectral decomposition of the input matrix (see
Kruskal & Wish, 1978; Cox & Cox, 1994). The algorithm begins
with an arbitrary placement of the stimuli and iteratively shifts the
stimuli in order to reduce the distortion (or “stress”) between the
interstimulus distances and the original similarities. Some residual
stress is to be expected when reducing a high-dimensional data
into a two-dimensional (2D) format. However, the algorithm finds
the best representation of similarities with the least amount of
distortion, so that stimuli which elicit dissimilar responses are
dispersed from each other and the stimuli which elicit similar
responses are clustered together.

Analysis of MDS clusters
We used randomization analysis to determine whether the

clustering of stimuli, if any, in a given MDS plot was significantly
nonrandom. The test statistic was theD ratio, which is directly

analogous to theF ratio (see below). An MDS plot was first
generated using the original 1283 128 correlation matrix de-
scribed above. Clusters of data points were provisionally identified
from a visual examination of the plot and theD ratio, defined as
the variance of the between-cluster distances divided by the mean
variance of within-cluster distances, was calculated. The correla-
tion matrix was then randomized and an MDS plot was generated
from the randomized matrix. TheD ratio was calculated for this
MDS plot using the original composition of the clusters. The
clustering in the original matrix was considered significantly non-
random if theP value was less than 0.05.

Cophenetic correlation
Cophenetic correlation is a method of calculating the correla-

tion coefficient between paired matrices or other high-dimensional
data (for overviews, see Sokal & Rohlf, 1962; Sneath & Sokal,
1973). To calculate the cophenetic correlation between a given pair
of stimulus plots, such as those generated by MDS, we first
calculated all pairwise distances among the 128 stimuli in each
plot. This resulted in two paired vectors, one from each plot, each
containing 1282 elements. The cophenetic correlation coefficient
rC between the two 2D plots is the conventional correlation
coefficient between the two paired vectors. Like the conventional
correlation coefficient, the values ofrC vary from 1.0 (perfect
correlation) to 0.0 (no correlation) to21.0 (perfect anticorrelation).

PCA (S-Plus routineprincomp) simplifies complex, high-
dimensional data by identifying a small number of factors that
underlie global patterns in the data and determining the extent to
which each factor, or principal component, “explains” the data. In
a manner analogous, but not identical, to multiple linear regres-
sion, PCA linearly transforms an original set of variables into a
smaller set of independent (i.e. uncorrelated) variables that repre-
sent most of the information in the original set of variables. We
used this technique to assess whether the V2 population response
could be adequately accounted for by a small number of response
patterns. Composites of the loadings were constructed using the
method of Turk and Pentland (1991). Briefly, to construct the
composite for a given principal component, each stimulus was
rendered using a grayscale value that represented its loading on the
given component, so that loadings of 1.0, 0, and21.0 resulted in,
respectively, a stimulus that was white, neutral gray (i.e. back-
ground), or black in color. The stimuli were then averaged across
space so that the composite for a given principal component
represented the weighted average of the loadings on the individual
stimuli.

Results

The diversity of V2 response profiles

The response profiles of individual V2 cells were often complex
and differed considerably from one cell to the next, as illustrated
by the exemplar cells in Fig. 3 (also see Fig. 1 of Hegdé & Van
Essen, 2000). The cell shown in Fig. 3A was sharply tuned for
shape. It responded maximally to the large right angle at 180 deg
(82 spikes0s, averaged across repetitions;third row). This response
was considerably larger than the sum of the responses to bars at
45 deg and 135 deg, suggesting a strongly nonlinear summation.
The second most effective stimulus, a large acute angle at 270 deg
( fourth row), elicited about two-thirds of the maximal response
(57 spikes0s). All other stimuli, including the remaining right angle
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or acute angle stimuli, elicited less than one-eighth of the maximal
response (average response, 6 spikes0s).

Most V2 cells were considerably more broadly tuned than the
cell in panel A. For the cell shown in panel B, the most effective

stimulus was the large acute angle at 180 deg (third row; 141
spikes0s), but the cell responded well to many other angles,
intersections, arcs, and its preferred bar. The cell’s responses were
substantially modulated by the shape characteristics of these con-

Fig. 3. The diversity of V2 response profiles. Each panel illustrates the responses of a single V2 cell to the stimulus set. The color of
each stimulus represents the net responses of the cell to the stimulus averaged across trials according to the color scale below each
panel. In each panel, stimulus orientations are normalized so that the preferred orientation, as determined during the manual mapping
of the receptive field, is shown as vertical. Occasionally, as in panel D, the quantitatively determined preferred orientation differed from
that estimated during manual plotting. The veridical preferred orientations determined during manual mapping for cells shown in panels
A–D were 90, 135, 30, and 60 deg, respectively. The trial-to-trial variations in the response (not shown) were generally small relative
to the mean responses. Across all stimuli and all 180 cells in our population, the average SEM of responses was 11.3% of the mean
responses. The response variances associated with systematic variations in the spatial placement of the stimulus within the receptive
field were also generally low (not shown).
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tour stimuli, such as the stimulus type (cf. acutevs. right angles),
orientation (cf. large crosses at 0, 22.5, 45, and 67.5 deg), and size
(cf. largevs. small three-quarter arcs), indicating that the responses
of the cell conveyed information about the shape characteristics of
many of the contour stimuli. Most of the effective stimuli con-
tained orientation components near the cell’s preferred orientation
(e.g. large tristar at 0 deg [top row], large five- and six-armed stars
[ rows 1–3], and the large obtuse angle at 270 deg [fourth row],
and the large one-quarter arc at 270 deg [fourth row]). However,
the cell responded poorly to the large acute angle at 0 deg (top
row), even though it contained the same orientation components as
the cell’s most effective stimulus.

The cell shown in Fig. 3C responded well to grating stimuli in
general, with the high-frequency polar grating (fourth row) elic-
iting the maximal response (80 spikes0s), and 14 other grating
stimuli, mostly at the lower spatial frequencies, eliciting at least
three-quarters of this response. Although the cell responded poorly
to most contour stimuli (mean response of 17 spikes0s across all
contour stimuli), it responded relatively well to the large circle and
three-quarter arcs (mean response of 48 spikes0s to these five
stimuli). Also, the cell responded well to many polar gratings on
the one hand and to the large circle and three-quarter arc stimuli on
the other, suggesting that curvature selectivity may have contrib-
uted strongly to this cell’s response profile. The cell in panel D
responded maximally to a small five-armed star (63 spikes0s;
second row). However, many stimuli (16 grating stimuli and 41
contour stimuli) elicited more than two-thirds of the maximal
response of the cell, and the least effective stimulus, a large acute
angle at 180 deg (third row), elicited 23 spikes0s above back-
ground. Also, the cell generally responded better to small contour
stimuli than to their larger counterparts (cf. smallvs. large acute
angles and three-quarter arcs).

The population average response
To gauge the response of V2 cells as a population to the

stimulus set, we calculated the normalized average population
response to each stimulus. Each cell’s responses to all 128 stimuli
were normalized so that the cell’s responses to its most and the
least effective stimuli were 1.0 and 0, respectively, thereby ensur-
ing that each cell contributed to the same extent to the population
average. The normalized responses were then averaged across all
180 cells.

Fig. 4A shows the average responses of the population to
individual stimuli. The top four stimuli, each of a different subtype
[including the preferred bar (top row), Cartesian grating (top row),
a concentric grating (top row), and a large acute angle at 180 deg
(third row)] elicited similar responses (0.50, 0.50, 0.47, and 0.47,
respectively). Nearly half the stimuli (560128, 44%), including
nearly four-fifths of the grating stimuli (38048, 79%), elicited more
than three-quarters of the maximal response (i.e.. 0.375). The
least effective stimulus for the V2 cell population, a small one-
quarter arc at 0 deg (top row), elicited nearly half of the maximal
response (0.23). Thus, the population average responses varied
over a relatively narrow range. In addition, all stimuli showed
substantial cell-to-cell-variation of response (Fig. 4B) (maximum
SD [preferred bar,top row], 0.30; minimum SD [small right angle
at 0 deg,top row], 0.17). Together, these results indicate that no
single stimulus was consistently effective or ineffective across the
population of V2 cells.

The population average responses demonstrate that V2 cells
were generally more responsive to the grating stimuli as a group
(mean response, 0.44; range, 0.50–0.34) than to the contour stim-

uli (mean responses, 0.36; range, 0.50–0.23). Also, larger contour
stimuli were relatively more effective (mean response, 0.38) than
the small contour stimuli (mean response, 0.27).

Together, the exemplar cells and the population response sug-
gest that the responses of V2 cells are modulated by many different
shape characteristics. In what follows, we first quantitate the
degree to which the various shape characteristics of the stimuli
modulate the responses of individual V2 cells. We then study how
V2 cells as a population represent the shape information.

Individual V2 cells carry information about
many shape characteristics

Response modulation across all stimuli
To measure the extent to which the responses of individual V2

cells were modulated by the stimulus set as a whole, we used two
indices, each addressing a different aspect of the cell’s response
profile. To determine whether the modulation of the given cell’s
responses across all 128 stimuli was larger than expected by
trial-to-trial variations in response, we calculated its overall mod-
ulation index,OMI (see Methods). V2 cells had an averageOMI
value of 4.03, indicating that, on an average, the overall response
of V2 cells was modulated about four-fold above the level ex-
pected from random (Fig. 5A). The response modulation was
significant (randomization analysis,P , 0.05) for about nine-
tenths of the cells (1630180, 91%;filled bars in Fig. 5A). The
median OMI value was 2.72, indicating that the responses were
modulated greater than 2.72-fold above random levels for half of
the population.

To measure the degree of selectivity for the most effective
stimulus, we calculated a stimulus selectivity index (SSI), given by
[1 2 (Rmean0Rpeak)], whereRmeanis the average response of the cell
to all 128 stimuli andRpeak is the response of the cell to its most
effective stimulus. SSI values of 0.50 and 0.75 denote that the
response to the cell’s most effective stimulus was, respectively,
two and four times larger than the cell’s average response to the
stimulus set as a whole. The exemplar cells shown in Figs. 3A and
3D, for instance, hadSSIvalues of 0.93 and 0.32, respectively. The
averageSSIvalue of V2 cells was 0.69, indicating that the response
of an average V2 cell to its most effective stimulus was about
three-fold larger than its average response to all stimuli (Fig. 5B).
The SSI values were poorly correlated with theOMI values
(rSSI,OMI 5 0.26), indicating that the two indices measured rela-
tively independent aspects of the response profiles. The degree of
selectivity for the preferred stimulus as measured by theSSIwas
significantly higher than chance (randomization test,P , 0.05) for
about four-fifths of the cells (1450180, 81%;filled barsin Fig. 5B).
The results were qualitatively similar when sparseness (see Rolls
& Tovee, 1995; Vinje & Gallant, 2000; Friedrich & Laurent,
2001), instead ofSSI, was taken as a measure of the peakedness of
the response profile (data not shown).

Altogether, the distributions of the two indices show that V2
cells were able to convey significant shape information using a
diversity of coding styles, varying from local coding to broad
tuning. Importantly, no pronounced clustering of tuning character-
istics was evident by either index.

Responses to gratings vs. contours
For many V2 cells, the response profiles to gratings and

contours differed substantially from each other. For instance, the
exemplar cell shown in Fig. 3C responded well to, and was broadly
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tuned for, grating stimuli as a class, but responded much more
selectively to contour stimuli. Conversely, the exemplar cell shown
in Fig. 3B was largely unresponsive to grating stimuli as a class,
but responded well to many contour stimuli.

To determine the extent to which V2 cells as a population
responded differentially to the grating versus contour stimuli in our

stimulus set, we carried out two analyses, one involving peak
responses and the other involving mean responses. Fig. 6A shows
the peak response of each cell to contour stimuli (i.e. the response
to the cell’s most effective contour) plotted against its peak grating
response. For about two-thirds of the cells (1180180, 66%), the
peak contour response exceeded the peak grating response (the

Fig. 4. The population response. (A) The normalized average response of all 180 V2 cells to the stimulus set. The maximum and the
minimum response from each cell were normalized to 1.0 and 0, respectively, and averaged across all 180 cells. The resulting
population averages ranged from 0.5 to 0.23, according to the color scale shown at the bottom. (B) The cell-to-cell variation of the
population response, measured as the absolute (i.e. non-normalized) standard deviation of the normalized responses to each stimulus.

Fig. 5. Response of modulation across all 128 stimuli
for individual V2 cells. For each cell, the modulation
of responses by the stimulus set as a whole was measured
using two different indices. The distribution of the re-
sulting index values is shown here in histogram form.
(A) Overall modulation index (OMI). (B) The stimulus
selectivity index (SSI). In either panel, thefilled bars
represent those cells for which the response modulation as
measured by the given index response was significantly
above random (P , 0.05) as determined by the random-
ization of spike counts across stimuli (see Methods). The
cells withP . 0.05 are denoted byopen bars. In this and
the subsequent figures, the exemplar cells in Figs. 3A–D
are indicated by the appropriate letters.
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cells below the diagonal); this preference was statistically signif-
icant (one-tailedt-test,P , 0.05, after Bonferroni correction) for
about one-third of these cells (430118, 36%, or 24% of the total;
data not shown). For the remaining cells, whose peak grating
response exceeded the peak contour response (620180, 34%), the
preference was statistically significant for about one-third (18062;
29%, or 10% of the total). However, the greater incidence of
contour-preferring cells may simply reflect a sampling bias, owing
to the fact that there were more contour stimuli than grating stimuli
(80 vs. 48).

We found more pronounced difference between the two stimu-
lus classes of stimuli in the mean response analysis, which com-
pared the responses of each cell averaged across the 48 grating
stimuli to the responses averaged across the 80 contour stimuli. The
results are denoted by the plotting symbols in Fig. 6A. For nearly
half of the cells (810180, 45%), the average grating response was
significantly larger (using a one-tailedt-test) than the average con-
tour response (P , 0.05; filled squares), whereas average contour
responses significantly exceeded the average grating responses for
only about a quarter of the cells (440180, 24%;filled triangles).
Nearly one-third of the cells (440180, 31%;open circles) showed
no significant preference. The response of V2 cells to gratings was
on average 1.62-fold larger than the response to contour stimuli.

To compare the sharpness of tuning of V2 cells to grating
versus contour stimuli, we calculated the sharpness of tuning index
separately for the grating and the contour stimuli (SSIG andSSIC,
respectively; see Methods). A great majority of V2 cells (1510180,
84%) were more broadly tuned to gratings than to contours (Fig. 6B;
cells below thediagonal), and this difference was significant in
about half (47%) of the total population (SSIC . SSIG, random-
ization test,P , 0.05 after Bonferroni correction). By contrast, the
tuning for the grating stimuli was sharper for only 16% of the cells
(290180), and significantly so for only 7% of the total population.
Together, these results indicate that V2 cells responded better on
average to the grating stimuli in our stimulus set, but were more
selective for the contour stimuli. The magnitude of this bias
depends, of course, on the particular choice of stimuli and might be
different (or even nonexistent) for other reasonable choices for
stimulus sets.

Response modulation by stimulus size
Most V2 cells responded better to large contour stimuli than to

small contour stimuli (Fig. 4A; also see Figs. 3A & 3B). Aside
from the differences in overall responsiveness, it is of interest to
know whether individual cells respond similarly to the large versus
the small version of each contour shape, that is, whether they show
size invariance across the two sizes sampled. To address this issue,
we calculated the correlation coefficientr between the cell’s
responses to large versus small contour stimuli. Because the issue
is primarily of interest for cells that were substantially responsive
to both large and small contours, we identified a subset of 77 cells
( filled bars in Fig. 7) meeting this criterion (see legend to Fig. 7).
The average correlation for this subgroup of 77 cells was 0.51,
substantially greater than the value of 0.32 for the population as a
whole. These results suggest that many, but not all, V2 cells show
considerable size invariance for the contour stimuli tested.

We also measured the response modulation within each of the
14 stimulus subclasses using theF ratio-based modulation indices.
These analyses showed that many V2 cells conveyed information
about each of the shape characteristics that varied within each
stimulus subclass, including orientation, spatial frequency, or size
of various stimuli (data not shown).

Fig. 6. Comparisons of V2 cell responses to contourvs. grating stimuli.
(A) Analyses of both peak and the mean responses are represented in this
panel. Thex andy coordinatesof each cell denote thepeakresponses of the
cell to the contour and the grating stimuli, respectively. The plotting
symbolsdenote the results of a one-tailedt test comparing themean
responses of each cell to contoursvs. gratings (and vice versa).Filled
squaresdenote cells for which the responses to the 48 grating stimuli were
significantly larger than the responses to the 80 contour stimuli (P , 0.05).
Filled trianglesdenote cells for which the responses to the contour stimuli
were larger than the responses to the gratings (P , 0.05), andopen circles
denote cells which showed no preference (P . 0.05). (B) The stimulus
selectivity indices for the contour and the grating stimuli (SSIC andSSIG
indices, respectively) are plotted against each other for each cell. Outlier
cells with index values of.1.0 were normalized to 1.0.Filled triangles
denote the cells for which theSSIC values were significantly larger than the
SSIG values (randomization test,P , 0.05 after Bonferroni correction). The
cells for whichSSIG values were significantly larger than theSSIC values
(P , 0.05) are shown asfilled squares. The cells which did not show a
significant preference (P . 0.05) are shown asopen circles.
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Population-wide patterns of response
From the results presented thus far, it is unclear whether the

response profiles of V2 cells are mutually unrelated or whether
there are meaningful similarities among the response profiles of
various V2 cells. We therefore studied the V2 population response
for global patterns of response across all cells. To do this, we
constructed a 1283 128 correlation matrix of the population
response, each element of which represented the correlation coef-
ficient of the responses of all V2 cells to a given pair of the 128
stimuli (see Fig. 8 for details). For example, two geometrically
similar spirals (stimuli 44 and 48 in Fig. 2) elicited strongly
correlated responses across the population (correlation coefficient
r 5 0.72), as shown in Fig. 8A, whereas two geometrically
disparate stimuli (spiral 47vs. bar 49) elicited poorly correlated
responses (r 5 20.08) as shown in Fig. 8B. Other stimulus
pairings, such as the arc (stimulus 114) and the chevron (stimulus
98) shown in Fig. 8C had intermediate correlation values (r 5
0.12). These correlation values were used to generate an overall
correlation matrix, which is shown in its entirety in Fig. 8E and for
a small portion in Fig. 8D in order to illustrate the contributions of
the exemplar correlation values in panels A–C.

We analyzed this correlation matrix using both multidimen-
sional scaling (MDS) and principal components analysis (PCA).
The MDS analysis reveals clusters of stimuli that tend to elicit
correlated responses across the population. The PCA analysis
provides insights regarding the dimensionality needed to account
for the diversity of response profiles in the population.

Patterns of response correlation: MDS analysis
The MDS plot derived from the correlation matrix reveals three

large clusters, each shown in a different color in Fig. 9. The 48
grating stimuli were grouped in a single, well-defined cluster
(stimuli shown inred). Thus, grating stimuli as a class elicited
similar (i.e. correlated) responses from V2 cells, consistent with
the results described earlier (see Fig. 6). The 80 contour stimuli
were more dispersed, but were identifiable as two relatively loose
clusters. One cluster (stimuli shown ingreen) contained 17 large
angles and arcs (including all the large right angles, semicircles,
circle, and three-quarter arcs and three of the four large acute
angles); the other cluster (stimuli shown inblue) contained the
remaining contour stimuli. In addition, the arrangement of stimuli
within each cluster does not appear random. Within the three main
clusters, many smaller subclusters of stimuli were discernible,
such as the large three-quarter arcs within the green cluster, and
small intersections within the blue cluster (dashed ellipsesin
Fig. 9). Within the grating stimulus cluster, radial gratings were
generally segregated from the concentric gratings.

To assess the statistical significance of these three subjectively
identified main clusters, we calculated pairwise distances between
all the stimuli in the MDS plot. We then compared the average
distance between clusters to the average distance within clusters
using the ratio (asD 5 MSbetween0MSwithin, whereMSbetweenis the
mean-squared distance, or variance of distances, between the three
clusters andMSwithin is the average variance of within-cluster
distances). TheD ratio of 403 for the MDS plot shown in Fig. 9
was highly significant (P , 0.001, randomization test).

Relative contributions of different patterns of
correlation: Principal components analysis
We used PCA to assess the relative contributions of different

correlation patterns evident in the MDS analysis. The response
variation accounted for by the ten most influential principal com-
ponents is shown in Fig. 10A. The first component accounted for
43% of the variation in the data, the first two accounted for 69%,
and the first eight accounted for 90% of the response variation.
Thus, a small number of response correlation patterns (principal
components), each accounted for a much greater proportion of the
population response than the 0.78% that would be expected by
chance (given that there were 128 principal components associated
with the 128 x 128 stimulus input matrix).

Fig. 10B shows the loadings of the stimuli on the first two
principal components. The loadings of individual stimuli on a
given principal component represent the extent to which the pop-
ulation responses to a given stimulus is correlated with (or, equiv-
alently, is influenced by) the given component. The pattern of
correlated and anticorrelated loadings on the two components
jointly identify the three stimulus clusters identified by MDS
(Fig. 9), in that the first component separates the blue cluster from
the remaining stimuli, and the second component segregates the
green cluster from the other stimuli (also see legend to Fig. 10B).
This was confirmed by ordination of the components (see Sneath
& Sokal, 1973), in which the loadings of the stimuli of the two
components were plotted against one another. The clusters of the
ordinated plot were similar, and the cluster memberships identical,
to the MDS plot shown in Fig. 9 (cophenetic correlation, 0.96; data
not shown).

Stimulus similarities underlying response correlations
Together, the PCA and MDS analyses elucidate some of the

similarities among the stimuli that underlie the correlated re-

Fig. 7. Correlation of responses to largevs. small contour stimuli. The
histogramshows the distribution of correlation coefficients comparing the
responses of each cell to the largevs. small contours. Thefilled barsdenote
cells which conveyed significant information about both large and small
contours, by virtue of passing five separate randomization tests atP ,
0.05. The tests measured response modulation across (1) largevs. small
contours, (2) large contours alone, (3) small contours alone, and compared
(4) evoked responsesvs. background responses to large contours, and
(5) evoked responsesvs. background responses to small contours. The first
three tests used theF ratio as the test statistic; the last two tests used the
t statistic.Open barsrepresent cells withP . 0.05 for one or more of
the tests.
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sponses. The response correlations which lead to the clustering of
grating stimuli with one another, and apart from the contours, may
include contributions from low-level stimulus characteristics like
mean luminance, which differed between the two sets of stimuli
(see Methods), or from higher order similarities of shape, or from
both. However, mean luminance is unlikely to fully account for the
response correlations, since many contour stimuli load similarly to
the gratings on both the first and the second principal components.
Instead, the loading patterns suggest that higher level shape char-
acteristics contribute substantially to the response correlations
between gratings and some contours. For instance, many large
semicircles, three-quarter arcs, and angles load similarly to the
gratings on the first component, suggesting that curvature or
orientation differences contribute to this principal component.

The loadings of the contour stimuli are correlated with stim-
ulus size along the second principal component (Fig. 10B, panel
2). Similar results were obtained when MDS or PCA were
repeated using only the responses to contour stimuli (see be-
low), confirming that stimulus size contributes substantially to
the second principal component. The pronounced differences
between the loadings of intersections versus those of most of the
large angles and arcs along the second component suggests that
the presence or absence of contour junctions is an important
factor as well.

Analysis of responses to contours and gratings alone
We analyzed the responses to contour and to grating stimuli

separately from each other using MDS and PCA. The MDS of

Fig. 8. Constructing the correlation matrix. Panels A–C each show the responses of V2 neurons (dots) to selected pairs of stimuli
plotted against each other. The responses of exemplar cells in Fig. 2A–2D are indicated byarrowswhere possible. Thelines represent
the best-fitting regression lines; the correlation coefficientr is a measure of deviation of the responses from this line. Panels E and D
show the entire 1283 128 correlation matrix and a magnified portion thereof, respectively, plotted according to thegrayscale on right.
In all panels, stimuli are numbered and oriented as in Fig. 2. To construct the correlation matrix, ther value for each possible pair of
stimuli was calculated and assigned to the corresponding element of the correlation matrix (dashed arrows). The elements along the
diagonal from lower left to upper right represent the correlation of the responses to a given stimulus with themselves (r 5 1.0).
The matrix is symmetrical about this diagonal, sincer ~i, j ! [ r ~ j, i) for any two stimulii and j. Note thatr values are low as long as
the overall correlation between the responses to the two stimuli is low (panels B and C), even if the responses of subsets of cells are
correlated to a greater degree (panel B).
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contour responses produced two clusters which were very simi-
lar to the two clusters of contour stimuli (i.e.green and blue
clusters) in Fig. 9 (cophenetic correlationrC, 0.93; data not
shown). The PCA of the contour responses (Fig. 11) revealed
stimulus similarities not readily apparent from the PCA of grat-
ing and contour responses combined. Seven principal compo-
nents exceeded the contribution to response variation expected
by chance (arrow and dashed linein Fig. 11A) and together
accounted for 88% of the response variation. Fig. 11B illustrates
the loadings of each of these components in composite form,
where the stimuli were weighted according to their loading on a
given component and overlaid atop each other (see Methods and
also Turk & Pentland, 1991). The first principal component
( panel B1), which accounted for more than half of the total
response variance, had positive loadings (bright pixels) domi-
nated by bar and angle stimuli and negative loadings (dark
pixles) by circular and arc stimuli. Of the top seven principal
components, curvature was a predominant shape characteristic in

five ( panels 1, 2, 5, 6, & 7), indicating that similarity of
curvature was an important determinant of the population re-
sponse to contour stimuli. Interestingly, panels 5 and 6 were
each dominated by arcs of opposite polarity (upvs. down in
panel 5; leftvs. right in panel 6). Angles and intersections are
also important contributors, given their relative prominence in at
least two of the top seven components (panels 3& 4).

The MDS of grating responses alone resulted in a single cluster
similar to the grating cluster (i.e.red cluster) shown in Fig. 9
(cophenetic correlationrC, 0.98) and did not reveal any obvious
subclustering among the grating stimuli (data not shown). Simi-
larly, PCA of grating responses failed to reveal any pronounced
subpatterns of response similarity among the grating stimuli (not
shown). Altogether, the response similarity patterns within the
grating and contour stimuli were consistent, whether assessed
separately or together by MDS or by PCA. This suggests that the
patterns were intrinsic to the population responses, and not an
artifact of a particular analysis procedure.

Fig. 9. Metric multidimensional scaling (MDS). Using MDS, the 128 stimuli were plotted so that stimuli which elicited similar
responses from the V2 cell population are clustered together and the stimuli which elicit disparate responses are dispersed
correspondingly father apart. The two axes represent arbitrary dimensions used by MDS. Three clusters of stimuli, denoted by arbitrary
colors,red, green, andblue, were identified based on their spatial separation from each other. Thedashed ellipsesdenote two potential
subclusters. The preferred bar is denoted by thearrow.
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Shape representation among subsets of V2 cells
The specific pattern of response correlations revealed by the

MDS analysis might in principle have been dominated by a
subpopulation of V2 cells or, alternatively, may reflect character-
istics that are widely distributed across the V2 population. To
distinguish between these two scenarios, we studied the extent to
which randomly chosen subsets of V2 cells exhibited the same
response correlation patterns as the overall population.

We randomly sampled the 180 cells at 17 different sample sizes
(10–170 cells per sample, in increments of ten cells), generated an
MDS plot using each sample, and used cophenetic correlation (see
Methods) to asses the similarity between the given MDS plot and

the original MDS plot generated using all 180 cells. The average
cophenetic correlation (6SD) for the 103 repetitions at each of the
sample sizes is shown in Fig. 12. When only ten cells were used,
the resulting MDS plots differed substantially from the original
MDS plot generated using all 180 cells (meanrC, 0.36; SD, 0.15).
The correlation with the original MDS plot increased rapidly to
correlation values of 0.5 for 20 cells (SD 0.14), 0.68 for 45 cells,
and 0.86 for 90 cells (SD 0.03). Thus, the response similarities
were largely independent of the particular subset of V2 cells
analyzed, as long as a moderate number of cells were sampled,
indicating that the underlying response similarities were a wide-
spread property of V2 cells.

Fig. 10. Principal components analysis (PCA). (A) Proportion of the response variation accounted for by the top ten principal
components. The height of each bar denotes the percentage of the response variation accounted for by the given principal component.
The numbers atop the bars denote the cumulative percentages of the response variation accounted for by successive principal
components. Thearrowheadand thedashed linedenote the expected level of response variation accounted for by each principal
component if the population response were random. (B) The loadings of individual stimuli on the top two principal components. The
color of a given stimulus represents its loading on, or its correlation with, the given principal component according to the corresponding
linear color scale at the bottom, wherered denotes positive correlation andblue represents anticorrelation. Note that the stimuli
positively correlated with the first principal component (panel 1) mostly constitute the blue cluster, and the anticorrelated stimuli belong
to the remaining two clusters, in Fig. 9. Note also that the stimuli anticorrelated with the second principal component (panel 2)
constitute the green cluster in Fig. 9.
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Fig. 11. PCA of the population response to the contour
stimuli. (A) Proportion of the response variation ac-
counted for by the top ten principal components. The
height of each bar denotes the percentage of the response
variation accounted for by the given principal component.
The numbers atop the bars denote the cumulative percent-
ages of the response variation accounted for by successive
principal components. Thearrow and thedashed lineboth
denote the expected level of response variation accounted
for by each principal component if the population re-
sponse were random. (B) The loadings of individual
stimuli on the top seven principal components in compos-
ite form. The numbersat top left of each composite
denotes corresponding principal component. To create a
given composite, each contour stimulus was drawn ac-
cording to its loading on the given component according
to the gray scale atbottom using arbitrary stimulus di-
mensions (preferred bar length and widths of 1.0 and 0.1
receptive-field diameters, respectively). The resulting 80
gray scale images were averaged across all pixels, so that
the gray value of a given pixel denotes its weighted
average loading on the given component. Neutral gray
(background color) represents an average loading of zero,
and brighter and darker shades of gray represent positive
and negative average loadings, respectively. See Methods
for details.

Fig. 12. Shape representation in random subsets of V2
cells. MDS plots were generated using random V2 cell
samples of systematically varying sizes. The correlation
of each such plot to the original MDS plot in Fig. 8 was
measured using cophenetic correlation. The mean cophe-
netic correlation coefficientsrC (averaged from 103 rep-
etitions for each sample size) are plotted here as a function
of sample size.Error bars represent standard deviations.
The asteriskdenotes the averagerC value (also from 103

rounds of randomization) that resulted when all 180 cells
were used, but the response similarities were randomized
among the stimuli. TherC values calculated from using
only the 108 cells from animal #1, only the 11 cells from
animal #2, or only the 61 cells from animal #3 are also
indicated (dots). The observedrC value from each animal
is indistinguishable from therC value expected from the
number of cells contributed by that animal (two-tailed
t-tests,P . 0.05, not shown).
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Discussion

Role of V2 cells in shape analysis and
image segmentation

Our results indicate that the responses of individual V2 cells
convey information about many characteristics of visual contours,
including geometric shape (curvature, intersections, and angles) as
well as size and orientation. Many individual V2 cells also convey
some information about textural characteristics, insofar as they are
selective for non-Cartesian or sinusoidal gratings. These observa-
tions are supported by recent findings that many V2 neurons have
spatially segregated subregions with different preferred orienta-
tions (Anzai & Van Essen, 2001, 2002).

In the present study, the population varied widely in terms of
selectivity for various shape characteristics. Also, the population as
a whole shows only modest biases in terms of responsiveness to
particular subsets of shapes. This suggests that V2 cells sample the
space of grating and contour stimuli widely and are not specialized
for analyzing a narrow subset of shape characteristics of contours
and0or textures within our stimulus set. This apparent diversity in
analysis strategies may reflect the diversity of perceptually rele-
vant shape cues in natural images (Cho et al., 2000; Geisler et al.,
2001; Sigman et al., 2001; also see Field, 1987; Simoncelli &
Olshausen, 2001).

Besides its involvement with monocular shape cues, V2 is
engaged in the analysis of several other low-level dimensions,
including stereoscopic disparity, color, and motion (see Van Essen
& Gallant, 1994; and Roe & Ts’o, 1997 for a review). That V2
should be engaged in such a broad spectrum of physiological
analyses is consistent with its hierarchical position as the primary
recipient of inputs from V1 and the source of projections to
numerous visual areas in both the ventral and dorsal processing
streams (Desimone & Ungerleider, 1987; Felleman & Van Essen,
1991). It also fits with computational arguments that early visual
processing involves multiple states of image analysis to generate
generic shape representations (Marr, 1982; Yuille & Ullman, 1995).

Significance of the response correlations and
low-dimensional representations

The fact that a modest number of principal components account for
most of the response variation in the population response indicates
that V2 cells can represent most of the shape information in our
particular stimulus set by a smaller number of basis functions than
would be required if the population responses were highly decor-
related. This supports the hypothesis of a low-dimensional repre-
sentation as plausible general strategy for shape representation in
V2. This strategy can provide a simplified, or low-dimensional,
representation of the visual input while preferentially retaining
perceptually relevant information, analogous to the manner in
which stenography represents words using a smaller number of
symbols with little ambiguity. Computational studies suggest that
low-dimensional representation, that is, simplification of the rep-
resentation to retain salient information and discard less salient
information, is an effective strategy of processing input data of
high complexity using limited data processing resources (Seung &
Lee, 2000; also see Roweis & Saul, 2000; Tennenbaum et al.,
2000). This strategy also facilitates generalization across varying
inputs (Oja, 1995; Seung & Lee, 2000). In our context, this would
signify that the V2 cell population can tolerate small geometric
variations in contour and texture cues while extracting relevant
higher order shape information.

Previous studies have suggested that neuronal populations in
macaque inferotemporal cortex encode faces along a small number
of psychophysically salient dimensions (Young & Yamane, 1992).
There is also evidence that major aspects of population responses
in other parts of the brain can be captured in a small number of
response dimensions related to the angular eye position or head
direction (McFarland & Fuchs, 1992; Taube, 1998). Our results
suggest that an analogous low-dimensional population representa-
tion of shape characteristics may be used in early visual cortical
processing stages.

It is naturally of interest to ascertain whether the dimensional-
ity with which complex shapes are represented varies markedly at
different levels of the visual hierarchy. Insights regarding this issue
should be attainable by systematically analyzing multiple visual
areas using a large but stereotyped family of shapes. At the level of
retinal ganglion cells and lateral geniculate nucleus (LGN) neu-
rons, it seems likely that the dimensionality would be lower than
what we encountered in V2, because neurons with stereotyped
center-surround receptive fields should respond similarly to many
different shapes, and a high fraction of response variance would be
captured by a few principal components. Whether there are changes
in dimensionality at different levels of the cortical hierarchy will
be more challenging to determine, for technical reasons that in-
clude the large interareal differences in average receptive-field size
and the difficulty of selecting stimulus sets that are effective in
spanning a large fraction of the relevant stimulus dimensions in
each area.

Another intriguing issue is whether the dimensionality of the
sensory representation changes significantly over the time course
of neural responses. For example, in the vertebrate olfactory
system, the mitral cell population response is initially low-
dimensional, but becomes decorrelated and higher in dimension-
ality during the responses to sustained odorant stimuli (Friedrich
& Laurent, 2001). This may allow the generation of an initial
coarse-grained representation, useful for rapid stimulus classifi-
cation, followed by a more slowly developing finer-grained
representation useful for finer-grained discrimination tasks. In
visual cortex, time-dependent changes in the selectivity of neu-
ronal responses occur in V1 and V2, suggesting that increases in
time-dependent dimensionality may occur for visual represen-
tations as well (Menz & Freeman, 2003; Hegdé & Van Essen,
unpublished data)
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