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firing rate of visual cortical neurons typically changes substantially
during a sustained visual stimulus. To assess whether, and to what
extent, the information about shape conveyed by neurons in visual
area V2 changes over the course of the response, we recorded the
responses of V2 neurons in awake, fixating monkeys while presenting
a diverse set of static shape stimuli within the classical receptive field.
We analyzed the time course of various measures of responsiveness
and stimulus-related response modulation at the level of individual
cells and of the population. For a majority of V2 cells, the response
modulation was maximal during the initial transient response (40–80
ms after stimulus onset). During the same period, the population
response was relatively correlated, in that V2 cells tended to respond
similarly to specific subsets of stimuli. Over the ensuing 80–100 ms,
the signal-to-noise ratio of individual cells generally declined, but to
a lesser degree than the evoked-response rate during the correspond-
ing time bins, and the response profiles became decorrelated for many
individual cells. Concomitantly, the population response became sub-
stantially decorrelated. Our results indicate that the information about
stimulus shape evolves dynamically and relatively rapidly in V2
during static visual stimulation in ways that may contribute to form
discrimination.

I N T R O D U C T I O N

Much research in neural information processing is predi-
cated on the notion that neurons convey information by varying
their firing rate. According to the rate coding hypothesis
(Abbott 1994; Adrian 1926; Rieke et al. 1998), a given visual
cortical neuron conveys information about a given set of visual
stimuli according to how its average firing rate is modulated
across the stimulus set (Pouget et al. 2000; Shadlen and
Newsome 1998).

Fluctuations in firing rate can be classified into 2 major
types. First, firing rates tend to fluctuate randomly from one
presentation to the next of the same stimulus (Shadlen and
Newsome 1998; Tolhurst et al. 1983). Trial-to-trial fluctuation
of firing rates (noise) and the effects of noise on the informa-
tion carried by the neuron have been characterized extensively
in various areas of the visual system (Abbott 1994; McAdams
and Maunsell 1999; Shadlen and Newsome 1994; Wiener et al.
2001; also see Softky and Koch 1993). Second, the firing rate
of a visual cortical neuron rarely stays constant during a
sustained presentation of a given stimulus; the neuronal re-
sponse to visual stimulation typically includes an initial tran-
sient peak followed by a declining response (Keysers et al.
2001; Lisberger and Movshon 1999; Müller et al. 1999, 2001;
Oram and Perrett 1992; Tolhurst et al. 1980, 1983; also see

Rieke et al. 1998). Explorations of the effects of this latter type
of firing rate variation in the visual cortex have largely focused
on the temporal dynamics of selectivity for various low-level
stimulus characteristics, such as orientation, spatial frequency,
contrast, and disparity, notably in area V1 (see, e.g., Albrecht
et al. 2002; Bredfeldt and Ringach 2002; Frazor et al. 2004;
Menz and Freeman 2003, 2004; Müller et al. 2001; Shapley et
al. 2003; also see DISCUSSION). Additional studies have exam-
ined the temporal dynamics of selectivity for orientation con-
trast in V1 (Knierim and Van Essen 1992), illusory contours in
V2 (Lee and Nguyen 2001), “border ownership ” in V2 and V4
(Zhou et al. 2000), complex chromatic and achromatic shapes
in inferotemporal cortex (Edwards et al. 2003; Keysers et al.
2001; Oram and Perrett 1992; Tovée et al. 1993), and motion-
based features in middle temporal (MT), middle superior
temporal (MST), and ventral intraparietal (VIP) areas (Cook
and Maunsell 2002; Duffy and Wurtz 1997; Pack and Born
2001; also see DISCUSSION). However, neither the temporal
dynamics of intermediate level shape processing nor the inter-
play between temporal dynamics and signal-to-noise have been
systematically studied in the extrastriate cortex.

Here, we examine the temporal dynamics of the response to
shape stimuli of low- to intermediate complexity in the extra-
striate visual area V2. We previously showed that neurons in
V2 carry detailed shape information about a diverse set of
visual shapes, including a variety of gratings and contours
(Hegdé and Van Essen 2000, 2003). Using this data set, we
studied the temporal dynamics of 3 main types of firing rate
variation in V2: 1) stimulus-to-stimulus variation, or signal; 2)
trial-to-trial variation, or noise; and 3) cell-to-cell variation in
the response to a given stimulus. Our study addressed the
temporal dynamics of the shape information conveyed by the
firing rate and not the information conveyed by the temporal
pattern the responses per se (McClurkin et al. 1991; Richmond
and Optican 1990), or by synchronized firing among subsets of
neurons (see Gray 1999; Salinas and Sejnowski 2001; Usrey
and Reid 1999).

We find that the magnitude and the nature of the information
carried by individual neurons and by the V2 cell population
change substantially over the course of the response. The
maximal response modulation at the individual cell level oc-
curs during the initial response transients. Information about
shape decorrelates over time for many individual cells and for
the population, suggesting that shape representation in V2
changes in meaningful ways in association with temporal
variations in the firing rate.
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M E T H O D S

The responses of single units to shape stimuli were recorded in area
V2 of awake, fixating monkeys, using experimental procedures de-
scribed elsewhere (Hegdé and Van Essen 2000, 2003). Briefly, 3 adult
male macaques (2 Macaca mulatta and one Macaca fascicularis)
were used in this study. Each animal was implanted with a scleral
search coil and an acrylic cranial patch using sterile surgical proce-
dures. After a given animal was fully trained in the fixation task, a
small craniotomy 5 mm in diameter was made over the recording site,
and a recording chamber was mounted over the craniotomy. Neuro-
physiological recording was carried out using epoxy-coated tungsten
electrodes (A-M Systems, Carlsborg, WA) with initial impedances of
3–5 M� (at 1 kHz) inserted transdurally into the cortex. All animal-
related procedures used in this study were reviewed and approved in
advance by the Washington University Animal Studies Committee.

Visual stimulation and recording

The animal fixated within a fixation window of 0.5° radius for a
juice reward while stimuli were presented within the classical recep-
tive field of the V2 cell under study. The stimulus set consisted of 48
grating stimuli and 80 contour stimuli (Fig. 1). Grating stimuli
consisted of conventional sinusoidal gratings, as well as non-Cartesian
(hyperbolic and polar) gratings. The contour stimuli consisted of bars,
intersections (tristars, crosses, and 5- and 6-armed stars), angles (acute
angles, right angles, and obtuse angles), arcs (one-quarter arcs, semi-
circles, and three-quarter arcs), and circles. The large contour stimuli
were matched in size to the cell’s preferred bar length (determined
qualitatively during receptive field mapping), with the exception of
larger obtuse angles and one-quarter arcs, which were scaled down
50% to ensure that they stayed within the classical receptive field. The
smaller contours in all cases were one half the size of the correspond-
ing larger contours.

The rationale for the stimulus set has been described previously
(Hegdé and Van Essen 2000, 2003). Briefly, the stimuli were selected
to probe the selectivity of V2 cells for a variety of low- and interme-
diate-level form cues. The grating stimuli probe the selectivity for
conventional spatial frequency and orientation (sinusoids), as well as
more complex textural characteristics (non-Cartesian gratings), which
the visual system may use as basis functions for surface representation
(Eagleson 1992; Perona 1991; Wilkinson et al. 1998; also see Bergen
1991; Gallant et al. 1996). The contour stimuli probe the selectivity
for conventional orientation (bar stimuli), along with selectivity for

the angles, intersections, orientations, and curvature of visual con-
tours, which may play an important role in image segmentation and
object recognition (Geisler and Super 2000; Geisler et al. 2001;
Rogers-Ramachandran and Ramachandran 1997; Sigman et al. 2001).
Although our stimuli explored a relatively large stimulus space, they
did not address many other important shape cues (e.g., disparity,
motion, etc.), and sampled many important shape characteristics (e.g.,
curvature) only sparsely because of practical limitations on the size of
the stimulus set.

Single cells were isolated using a window discriminator (Bak
Electronics, Germantown, MD). The cell’s receptive field was
mapped using multiple mouse-driven bar- or grating stimuli on the
computer’s monitor. The cell’s preferred bar parameters, including
preferred length, width, color, and orientation, were also determined
during the manual mapping. For the recording, the stimulus set was
reoriented for each cell according to the cell’s preferred orientation
(also see legend to Fig. 1). All stimuli were presented in the cell’s
preferred color (qualitatively assessed using a palette of 6 colors) over
a uniform gray background. The line width of contour stimuli was
determined by cell’s qualitatively estimated preferred bar width. The
grating stimuli had a spatial frequency of 2, 4, or 6 cycles per
receptive field diameter and had the same diameter as that of the
receptive field and the same mean luminance as that of the back-
ground. Stimuli were presented sequentially for 300 ms each with a
300 ms interstimulus interval. Up to 6 stimuli were presented per trial
in this fashion. The stimuli were randomly interleaved, so that the
effects of systematic eye position drifts, and so forth, over the course
of the trial were minimized. In general, the fixation jitter was much
narrower for each of the 3 animals than the �0.5° range allowed, and
none of the animals showed any drifts or other systematic effects of
fixation fatigue. To reduce the contributions of any receptive field
nonuniformities, each stimulus was presented at 3 different jitter
positions, spaced evenly from each other, and offset from the recep-
tive field center by 25% of the receptive field radius.

The spikes were collected at a resolution of 1 ms using a Silicon
Graphics Indigo2 workstation using custom-written experimental con-
trol software. Presentation of visual stimuli was synchronized with the
spike-collection software at a temporal resolution of �7 ms (i.e., 1/72
Hz, the screen refresh rate). The response to each stimulus was
recorded over 12 randomly interleaved repetitions (except for 62 cells
from one animal, which had 9 repetitions per stimulus, 3 at each jitter
position). Only the data from trials throughout which the animal
maintained fixation were further analyzed.

FIG. 1. Stimulus set, consisting of 128 stim-
uli, 48 of which were gratings and 80 were
contour stimuli. A: grating stimuli included 12
sinusoidal gratings, 12 hyperbolic gratings, and
24 polar gratings. B: 80 contour stimuli included
bars, tristars, crosses, stars, acute angles, right
angles, obtuse angles, one-quarter arcs, semicir-
cles, and three-quarter arcs and circles. For the
purposes of many of the analyses in this study,
the stimuli were numbered sequentially from 1
through 128 (grating stimuli from 1 through 48,
and the contour stimuli from 49 through 128) as
indicated by the numbers above and below each
column of stimuli.
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Data analyses

The data were analyzed using the statistical utility S-Plus (Insight-
ful, Seattle, WA) or Matlab (The Mathworks, Natick, MA) or custom-
written C language software. A total of 196 cells were recorded from
4 hemispheres of 3 animals. In 180 cells, at least one of the 128
stimuli evoked a response greater than the background at a signifi-
cance level of P � 0.05 (2-tailed t-test with Bonferroni correction for
128 comparisons, � � 0.05/128; see Huberty and Morris 1989; also
see Savitz and Olshan 1995; Thompson 1998); all 180 of these were
included in this study.

ASSIGNING SPIKES INTO BINS. Spikes fired by the given cell between
0 and 300 ms after stimulus onset were analyzed in this study, unless
specified otherwise. For most analyses, the spikes in response to each
presentation of each stimulus were divided into 15 consecutive time
bins of 20 ms, each extending from 0–300 ms, so that the bins had
identical binwidth but contained a variable number of spikes, depend-
ing on the cell’s firing rate during the given bin. For some analyses,
15 consecutive bins that contained equal number of spikes but had
variable binwidth were used instead. To calculate these bins for a
given cell, the spikes fired by the cell across all repetitions of all
stimuli were pooled, preserving the relative temporal order in which
they occurred during the 0–300 ms time interval. This ordered train
of spikes was divided into 15 consecutive bins so that each bin
contained an equal number of spikes; the final 14 or fewer spikes
closest to the 300 ms mark were discarded so as to avoid fractional
spike counts.

TESTS OF SIGNIFICANCE. Conventional parametric tests of signifi-
cance were used where appropriate. In most cases, however, we used
randomization analysis, by determining whether the value of a suit-
able test statistic calculated from the actual data differs significantly
from the distribution of the same test statistic calculated from ran-
domized data (see Edgington 1995; Manly 1991). For each test, an
appropriate test statistic was first calculated using the actual neural
response data. The data were then randomized across bins, trials,
stimuli, and/or cells as appropriate, and the test statistic was recalcu-
lated using the randomized data. The randomization process was
repeated 106 times [103 times in the case of multidimensional scaling
(MDS) analyses described below]. The proportion of times the ran-
domized test statistic exceeded the actual test statistic constituted the
one-tailed probability P that the actual value of the test statistic was
attributed to chance.

In cases involving multiple comparisons, we adopted a stringent
approach of using the Bonferroni correction (� � 0.05/n, where � is
the probability of type I error and n is the number of comparisons; see
Huberty and Morris 1989; also see Savitz and Olshan 1995; Thomp-
son 1998).

INDICES. To measure the sharpness of a given cell’s shape selectiv-
ity profile during a given bin, we used the tuning sharpness index
(TSI), defined as [1 � (Rmean/Rmax)], where Rmean is the cell’s mean
response to all 128 stimuli and Rmax is the cell’s response to its most
effective stimulus. The TSI is sensitive to noise, given that random
fluctuations in firing rate will tend to increase Rmax by chance without
affecting Rmean, thus increasing TSI.

To measure the modulation of a given cell’s responses above
random noise levels by the stimuli, we used the response modulation
index (RMI). To calculate RMI for a given cell during a given bin, we
first calculated the conventional F ratio of the cell’s responses to the
given set of stimuli, given by F � MSbetween/MSwithin, where MSbetween

is the stimulus-to-stimulus variance across trials (or, equivalently, the
between-stimulus mean squares), and the MSwithin is the average trial-
to-trial variance. The F ratio is an explicit measure of the signal-to-noise
ratio because MSbetween and MSwithin are measures of the signal and the
noise, respectively. Note that MSbetween values subsume the correspond-
ing MSwithin values, so that MSbetween represents both the stimulus-to-

stimulus variance and trial-to-trial variance, whereas MSwithin represents
only the trial-to-trial variance (see Brase and Brase 1995). To calculate
RMI, we randomized the responses across the stimuli and recalculated the
F ratio. RMI was defined as the F ratio calculated from the actual data
divided by the average F ratio from the randomization rounds. This
normalization of the actual F ratio with the average randomized F ratio
effectively corrected for deviations of the data set from normality. We did
not use information-theoretic measures to quantify information, mainly
because the number of repetitions per stimulus in our data set (9–12
depending on the cell) was too small for such analyses. Briefly, small
sample sizes (i.e., small number of repetitions) result in systematic biases
in the information-theoretic estimates of the information conveyed (Pan-
zeri 1996; Panzeri and Treves 1996). To correct for these biases is
desirable to have at least as many repetitions per stimuli as there are
stimuli in the stimuli set (128 in our case); smaller number of repetitions
will result in systematic overestimation of the information conveyed
(Panzeri 1996, p. 91–94; Panzeri and Treves 1996, p. 90–100; also see
Rolls et al. 2003). Note that ad hoc corrections, including those suggested
by Chee-Orts and Optican (1993), do not adequately correct for this error
(see Panzeri 1996, p. 91–94; Panzeri and Treves 1996, p. 88).

CALCULATING POPULATION AVERAGES. To calculate the population
average of a given metric, we first normalized the values of the metric
across all time bins to a maximum of 1.0 for each cell to correct for
cell-to-cell differences in the response magnitude. We then averaged
the normalized values across all 180 cells separately for each bin. SE
values were calculated for each bin as the SE of the normalized values
across all cells in that bin. The only exception to this procedure was
the population average of the sharpness of tuning index (TSI) values
shown in Fig. 4D, which were averaged across the population without
being normalized, because the TSI values ranged from 0 to 1 to begin
with.

CALCULATING THE TIME OF MAXIMUM RESPONSE AND MAXIMUM

RESPONSE MODULATION. For each cell, the time histograms of the
firing rate and of the RMI across the 15 bins were smoothed separately
using a Gaussian filter (� � 10 ms), and the time value corresponding
to the peak was determined to the nearest millisecond. We used
randomization analysis (see above) to determine whether the peaks
were the result of noise. To do this for the RMI peak for a given cell,
we randomized the spike counts of the cell across all bins and stimuli
and recalculated the RMI for each bin. We then smoothed the
resulting 15-bin time histogram and determined the peak as for the
nonrandomized data. This procedure was repeated for 1,000 rounds.
The proportion of rounds during which the peak was at least as tall as
the peak from that from the actual data represented the one-tailed
probability P that the peak from the actual data was attributed to noise.
The statistical significance of the firing rate peaks was determined
similarly.

Analysis of response correlations at the population level

To analyze patterns of response correlation across the population,
we used metric MDS and principal components analysis (PCA), as
described in Hegdé and Van Essen (2003). Briefly, we used a 128 �
128 correlation matrix of the population response as the input to MDS
or PCA. Each element of the matrix represented the correlation
coefficient of the responses of the V2 cells (averaged across trials, but
non-normalized) to a given pair of the 128 stimuli (see Fig. 8A; also
see Hegdé and Van Essen 2003; Kachigan 1991, p. 147).

We used MDS (S-Plus routine cmdscale; for an overview, see
Kachigan 1991) to visualize the large patterns of correlation in the
population response to the various stimuli, so that the distances
between the stimuli represents the similarity of the responses of V2
cells to the stimuli. The MDS algorithm begins with an arbitrary
placement of the stimuli and iteratively shifts the stimuli to reduce the
distortion (or “stress”) between the interstimulus distances and the
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original similarities. Some stress is inevitable when reducing high-
dimensional data into a 2-dimensional format, given that interstimulus
distances can rarely be found in a 2-dimensional plot that exactly
match the similarities in a 128 � 128 dimensional matrix. However,
the algorithm finds the best representation of similarities with the least
amount of distortion, so that stimuli that elicit dissimilar responses are
dispersed from each other and the stimuli that elicit similar responses
are clustered together.

ANALYSIS OF MDS CLUSTERS: D RATIO TEST. We used randomiza-
tion analysis to determine whether the clustering of stimuli, if any, in
a given MDS plot was significantly nonrandom. The test statistic was
the D ratio, which was directly analogous to the conventional F ratio,
making the D ratio test a direct analog of the F test. An MDS plot was
first generated using the original 128 � 128 correlation matrix
described above. Clusters of data points were provisionally identified
from a visual examination of the plot and used to calculate the D ratio,
defined as the variance of the between-cluster distances divided by the
mean variance of within-cluster distances. The correlation matrix was
then randomized and an MDS plot was generated from the random-
ized matrix. The D ratio was calculated for this MDS plot using the
original composition of the clusters. The clustering in the original
matrix was considered significantly nonrandom if the P value was
�0.05.

COPHENETIC CORRELATION. Cophenetic correlation is a method of
calculating the correlation coefficient between paired matrices or
other high-dimensional data (for overviews, see Sneath and Sokal
1973; Sokal and Rohlf 1962). We used a version of this method to
measure the similarity between a given pair of MDS plots or corre-
lation matrices (for details, see Hegdé and Van Essen 2003). Like the
conventional correlation coefficient, the values of rC vary from 1.0
(perfect correlation) to 0.0 (no correlation) to �1.0 (perfect
anticorrelation).

PCA (S-Plus routine princomp) simplifies complex, high-dimen-
sional data by identifying a small number factors that underlie global
patterns in the data and determining the extent to which each factor,
or principal component, accounts for variance in the data. In a manner
analogous, but not identical, to multiple linear regression, PCA
linearly transforms an original set of variables into a smaller set of
independent (uncorrelated) variables (principal components) that rep-
resent most of the information in the original set of variables. If the
given data set is highly correlated (or equivalently, redundant or
low-dimensional), a small number of principal components will ac-
count for a large proportion of the data, and the proportion of data
explained will tend to fall off sharply from the top component on. As
the input data become increasingly decorrelated (or increase in di-
mensionality, or decrease in redundancy) it takes progressively more
principal components to account for a given proportion of the data,
and successive principal components will tend to account for more
comparable proportions of data. We used this technique to assess the
temporal variations in the dimensionality of the V2 population
response.

R E S U L T S

Temporal dynamics of the firing rates

When tested with the stimulus set shown in Fig. 1, many V2
cells responded with a brisk initial transient response that
rapidly decayed to a sustained level at a lower firing rate. In
Fig. 2A, the response pattern for an exemplar V2 cell is shown
as the average firing rate across all stimulus presentations,
superimposed on individual raster patterns that are ordered in
the actual sequence of stimulus presentation. The cell had low
spontaneous activity (4 spikes/s), responded with a latency of

about 30 ms after stimulus onset, fired maximally (121
spikes/s) about 50 ms after stimulus onset, declined rapidly to
below 20 spikes/s, then rebounded to a sustained rate of 20–30
spikes/s. The average response for the entire population of V2
cells (Fig. 2B, solid line), showed a similar response pattern,
including a rapid transient response (35–85 ms after the stim-
ulus onset), a sustained response at about 40% of the peak rate,
and a modest OFF-response (arrow).

FIG. 2. Temporal dynamics of the firing rates. A: response rasters of an
exemplar V2 cell. During each trial, up to 6 stimuli were presented one after
another for 300 ms each (thick horizontal bar) with 300-ms interstimulus
interval, while the animal maintained fixation (see METHODS). Here, the data
from each trial are parsed according to the stimuli, so that the spikes (dots)
occurring before, during, and after the presentation of a single stimulus are
shown on a raster line of its own. Rasters are arranged in the order in which
the stimuli were presented to the cell, starting with the earliest at the bottom,
and are vertically aligned with respect to the stimulus onset. Solid trace
denotes the aggregate poststimulus time histogram of the cell’s responses
across all presentations of all stimuli (bin size, 5 ms). Firing rate remained
significantly above background levels throughout the cell’s response (binwise
one-tailed t-test, P � 0.05; binwidth, 5 ms). B: population average. Solid line
and the dotted lines denote population average � SE (see METHODS). Arrow
points to the OFF-response. Note that the responses to visual stimulation persist
into, and gradually decline during, the early part of the subsequent interstimu-
lus interval.
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Stimulus-to-stimulus differences in the temporal dynamics of
the firing rate

Figure 3 illustrates the spike density function (SDF) for
individual stimuli presented to the exemplar cell, with each
row showing the SDF for a single stimulus averaged across 9
repetitions. Numerous stimuli elicited strong responses during
the 40–60 ms interval after the stimulus onset, but most of
those were far less effective later in the stimulation period. In
contrast, a few stimuli including the large acute angles at 0 and
180° (rows 81 and 83), elicited a relatively strong response
throughout the stimulus presentation.

To analyze how the exemplar cell’s shape selectivity profile
(i.e., the responses of the cell to all 128 stimuli) varied with
time, we divided the responses of the cell during the 300-ms
visual stimulation into consecutive 20 ms bins and determined
the cell’s response profile during each bin. Figure 4A shows the
cell’s response profile during the 40–60 ms time window,
using a display in which each stimulus is colored according to
the mean response it elicited during this window. During this
window, which included the initial response peak, the cell
responded maximally to an intermediate frequency radial grat-
ing (187 spikes/s, third row) and also relatively well to a
variety of other gratings, intersections, and angles. The sharp-
ness of the cell’s selectivity, measured using the TSI (see
METHODS), was 0.59 during this bin (thin red line in Fig. 4D),
corresponding to a 2.4-fold ratio between the most effective

stimulus and the average response to all 128 stimuli during this
time window.

During the 160–180 ms time window (Fig. 4B), the most
effective stimuli were the large acute angles at 180° (122
spikes/s, third row) and 0° (120 spikes/s, first row). The cell
responded poorly to most other stimuli, including many that
were effective during the 40–60 ms bin (e.g., the intermediate
frequency radial grating, third row). The TSI increased to 0.8
for the 60–80 ms window, corresponding to a 5-fold ratio
between the best and the average response, and it remained
near this level for the remainder of the stimulus presentation
(Fig. 4D, thin red line). Overall, the cell’s shape-selectivity
profiles during the 40–60 ms bin versus the 160–180 ms bin
were poorly correlated (correlation coefficient r � 0.17). The
shape-selectivity profile calculated over the entire 300 ms
interval (Fig. 4C) largely resembled that during the 160–180
ms bin (r � 0.69), indicating that there was reasonable con-
sistency in shape selectivity after the initial transient. Together,
these results indicate that the response profile of the exemplar
cell substantially decorrelated over the course of the response.

The broader tuning (i.e., decreased TSI) during initial tran-
sients might in principle reflect a saturation effect, in which
many stimuli elicit a near-maximal firing rate. If saturation
occurred and were related to the cell’s relative refractory
period, the variance/mean ratio (VMR) of the responses across
all stimuli should decrease during the initial transient, as
indeed occurs in V1 cells responding to flashed gratings (Mül-

FIG. 3. Time course of the response of the exemplar cell
to individual stimuli. Each row represents the spike density
function (SDF) of a single stimulus, drawn according to the
color scale shown on the right. SDFs in this figure are
numbered (right) in the same order as the stimuli in Fig. 1;
SDFs of representative stimuli from each stimulus subclass
are highlighted by the corresponding icons on the left. Each
bin of a given SDF represents the firing rate of the cell
during a given 5 ms interval averaged across 9 repetitions of
the given stimulus. In this and the subsequent figures, the
stimulus onset and offset are denoted by the filled and open
arrowheads, respectively. The square brackets at the bottom
designate the time windows from which the shape selectiv-
ity profiles shown in Fig. 4, A–C were calculated. For the
purposes of many of the analyses in this report, the spikes
fired during the 300 ms stimulus presentation were classi-
fied into 15 consecutive bins of 20 ms each (bottom).
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ler et al. 2001). The VMR computed for the exemplar cell was
0.55 for the 40–60 ms window, increased to about 0.8 in the
60–140 ms window, then declined to about 0.65 after 160 ms.
This is consistent with some initial saturation in the exemplar
cell. However, for the population response, the VMR (thick
blue line) was maximal during the 40–60 ms bin during which
TSI was lowest and declined subsequently as the TSI values
(thick red line) increased. Thus response saturation related to
refractoriness is unlikely to be a general explanation for the
increases in tuning sharpness after the initial transient.

Temporal dynamics of the signal-to-noise ratio

To measure the information conveyed by each neuron after
accounting for trial-to-trial fluctuations (i.e., noise), we used
the response modulation index (RMI), which is based on the F
ratio and provides an explicit measure of the signal-to-noise
ratio (see METHODS). In one analysis, the time course of the RMI
was calculated using 20 equal time bins (15 ms/bin). Because
the use of equal binwidth could in principle underestimate the

response modulation during intervals of low average re-
sponses, we carried out a separate analysis in which the bins
for each cell were adjusted to give an equal total spike count
(see METHODS). The results for both analyses were very similar
and are illustrated here only for the equal time bin analysis.

Figure 5A shows results for the exemplar cell, with the RMI
indicated by the thick solid line and large dots. Measures
contributing to the RMI, the conventional F ratio (i.e., the
signal-to-noise ratio, medium dotted line), and randomized
average F ratio (thin dashed line), are also shown (see legend
for details). The RMI had values of 2.8 and 2.9 during the first
2 responsive bins (20–40 and 40–60 ms), rose to a peak of 6.0
during the 60–80 ms bin, then decreased to about 5 from
100–180 ms and about 3.5 from 180–300 ms. Thus the
responses of this cell conveyed significant shape information
with a time course that differed substantially from the cell’s
mean firing rate.

For the population as a whole, the normalized RMI values
showed a similar temporal pattern to that of the exemplar cell

FIG. 4. Shape-selectivity profile of the exemplar cell
during different time periods. Response profile of the ex-
emplar cell during 40–60 ms (A), 160–180 ms (B), or
0–300 ms (C) after the stimulus onset are shown. Note that
the color scales in the 3 panels are different from each other
and from that in Fig. 3. D: temporal dynamics of sharpness
of shape selectivity. Sharpness of the response profile was
measured using the tuning sharpness index (TSI) for each
cell during each 20-ms bin. TSI values vary from 0 to 1,
with larger values denoting correspondingly sharper tuning
(see METHODS). Thin red line denotes the TSI values of the
exemplar cell. Thick red line represents the average TSI for
all 180 V2 cells; the red dashed lines represent � SE.
Similarly, the thin blue line represents the variance/mean
ratio (VMR) values of the exemplar cell, normalized to a
maximum of 1.0. Thick blue line and the blue dashed lines
represent the population average and � SE, respectively, of
VMR values. In this and the subsequent figures, the data for
each 20 ms bin are plotted at the midpoint of the bin.
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(thick solid line in Fig. 5B). The population average RMI
peaked during the 40–60 ms bin, and decreased gradually
through the remainder of the stimulation period. Direct com-
parison of the normalized RMI to the normalized mean firing
rate (Fig. 5C) shows that the RMI declined more slowly than
the mean firing rate, resulting in an RMI:response ratio that
increased in the interval between 60 and 100 ms.

To assess whether the temporal dynamics depend strongly
on the different stimulus classes within our overall stimulus
set, we carried out the same analyses, but using the responses
to only the 12 sinusoidal stimuli (medium gray line in Fig. 5B)
or only the 4 oriented bars (thin black line). The results were
statistically indistinguishable (one-way ANOVA, P � 0.05)
for both the exemplar cell (data not shown) and for the
population as a whole (Fig. 5B), indicating that the information
conveyed about spatial frequency and/or orientation follows a
similar temporal dynamic pattern as that about the stimulus set
as a whole.

Reliability of response modulation during various phases of
the response

The population averages of RMI, though informative, do not
address the question of whether or to what extent the response
modulation was statistically significant during various bins. To
address this issue, we determined, for each bin, the cells for
which the evoked responses were both significantly above
background (as measured by a 2-tailed t-test, P � 0.05 with
Bonferroni correction) and were modulated significantly above
random levels (as measured by the RMI, P � 0.05 with
Bonferroni correction) during the same bin. Of the 180 cells,
161 cells (89%) met both criteria for at least one bin. For each
of these 161 cells, we determined the bin during which the cell
conveyed the earliest, largest, and latest significant shape
information by the above 2 criteria, as illustrated schematically
in Fig. 6A. The results are shown in Fig. 6, B–D. About one
third (58/161, 36%) and eight tenths (127/161, 79%) of the
cells conveyed significant shape information within 40 and 60
ms of the stimulus onset, respectively (Fig. 6B). About one half
(81/161, 50%) and two thirds (113/161, 70%) of the cells,
respectively, conveyed maximal shape information within the
first 60 and 80 ms after the stimulus onset, respectively (Fig.
6C). About three tenths of the cells (48/161, 30%) conveyed
significant shape information as late as the last (i.e., 280–300
ms) bin, although at lower RMI values (Fig. 6D).

Taken together, these results indicate that 1) the responses of
V2 cells tend to be modulated to the greatest extent early on
during the response, both in terms of the reliability (i.e.,
statistical significance) and the magnitude of the response
modulation; and 2) many V2 cells continue to convey signif-
icant shape information throughout the response.

Because the modulation of a cell’s response is closely
related to its firing rate, we investigated whether and to what
extent the 2 parameters were correlated for a given cell. To
address this issue, we carried out 2 analyses. First, we com-
pared the time of maximal response with the time of maximal
response modulation for each cell (Fig. 7A). For 151 (84%) of
the 180 cells (denoted by filled circles in the scatter plot), the
peak response and peak response modulation were both sig-
nificantly higher than expected from chance, as determined by
randomization (P � 0.05 with Bonferroni correction; see

FIG. 5. Temporal dynamics of response modulation. A: calculation of the
response modulation index (RMI) illustrated using the data for the exemplar
cell in Fig. 2. An F ratio was calculated during each of the 15 bins. RMI for
the given bin was calculated as the actual F ratio divided by the average
randomized F ratio. B: population average, calculated by normalizing the RMI
values for each cell to a maximum of 1.0 and averaging the normalized values
across all cells. Average RMI values calculated using the responses to all 128
stimuli, only to the 12 sinusoids, or only to the 4 large bars are shown. C:
comparison of response vs. response modulation. Ratio between the firing rate
and RMI was calculated for every cell, and the resulting values were normal-
ized to a maximum of 1.0 for each cell and averaged across all cells.
Population averages of the RMI:response ratios and the firing rate are drawn to
the y-scale on the right, and the population average of RMI is drawn to the
y-scale on the left. In C, the RMI:response ratios are not directly comparable
to RMI or firing rate values because they were normalized separately for each
cell.
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METHODS). For these cells and for V2 cells in general, the peak
in response modulation was substantially delayed relative to
the initial response transients, to an even greater degree than
for the exemplar cell. For 30% of the overall population
(54/180) and of the cells denoted by filled circles (46/151), the
response modulation peaked more than 20 ms after the peak in
firing rate. For 23 of these 46 cells (50%), and for 21% of the
overall population (37/180), the response modulation (as mea-
sured by the RMI value) was significantly larger (P � 0.05
with Bonferroni correction) for the bin during which the RMI
was maximal than for the bin during which the firing rate was
maximal. The overall correlation between peak response and
maximum response modulation was poor across all V2 cells
(r � 0.19), and across the 151 cells with significant peaks in
the response and the response modulation (r � 0.10). In the
second analysis, we calculated the r value between RMI and
average neuronal response across all bins for each cell. The r
values varied considerably from one cell to the next (Fig. 7B).
The correlation was statistically insignificant (P � 0.05, r �
0.58, one-tailed Pearson product moment correlation) for about
three fifths of the cells (105/180, 58%; open bars). The average
r value for all V2 cells was 0.38. Thus the mean response was
a poor predictor of response modulation for many V2 cells.

Temporal changes in the population response

The results presented thus far deal with the temporal dynam-
ics of response modulation at the level of individual cells. We
also studied the temporal dynamics of the population response,
specifically to determine whether and to what extent the pop-
ulation response decorrelated over time. To do this, we calcu-
lated a correlation matrix of the population response during
each 20 ms bin, so that each element of a given matrix
represented the correlation coefficient r between the responses
of all V2 cells to a given pair of stimuli (see Fig. 8A and
METHODS). The matrices corresponding to 4 selected bins are
shown in Fig. 8B.

The matrices varied significantly across the bins (one-way
ANOVA, P � 0.05, data not shown). Figure 8C shows the

mean r value (�SE) from the correlation matrix corresponding
to each bin. During the first bin (0–20 ms) (i.e., before the
response onset), the mean r value was low (0.23), and the r
values were distributed across stimuli apparently randomly
(Fig. 8B, panel 1). The mean r values increased sharply over
the next 2 bins, peaking at 0.4 during the 40–60 ms bin, when
the population average response was maximal (cf. Fig. 2B).

The population response decorrelated progressively from 60
to 160 ms, then stabilized at a low level (0.19–0.22) compa-
rable to that of the 0- to 20-ms bin. The SE of the r values
(error bars in Fig. 8C) varied little across all 15 bins (range,
0.009–0.01), even as the mean r values varied from one bin to
the next, indicating the r values rose or fell consistently across
the various stimuli from one bin to the next.

During the 40–60 ms bin, the response correlation was
highest among the gratings (Fig. 8B, panel 2, stimuli 1–48) and
some large contour stimuli. This pattern of correlations is more
clearly visualized by the MDS plot of this correlation matrix
(Fig. 8D), in which the stimuli that elicited relatively consistent
responses across the population (i.e., elements of the correla-
tion matrix with similar colors) are clustered together, whereas
stimuli that elicited disparate responses from one cell to the
next are dispersed farther apart (see METHODS for details). If the
response correlations vary randomly among stimuli, the stimuli
are expected to scatter randomly, with no significant clustering.
If the responses were perfectly correlated or uncorrelated (i.e.,
r � 1.0 or r � 0.0, respectively) across all stimuli, all stimuli
will fall on a single point. Three clusters were identifiable in
the MDS plot, one containing all of the grating stimuli (red
cluster), another containing 17 large angles and intersections
(green cluster), and a third (blue cluster) containing the re-
maining contour stimuli. These clusters were highly significant
as measured by the D ratio test (where the D ratio is a direct
analog of the F ratio; see METHODS), with 0/1,000 rounds
passing the criterion, indicating that the underlying correlation
patterns were highly nonrandom. The pattern in Fig. 8D is very
similar to those in a previous analysis of the same data set
(Hegdé and Van Essen 2003) that used a somewhat broader

FIG. 6. Magnitude and reliability of re-
sponse modulation at various stages of the
response. Bins during which the evoked re-
sponses were both significantly higher than the
background levels and significantly modulated
across stimuli were determined for each cell,
as illustrated schematically in A for a hypo-
thetical cell. From the bins that met both of the
criteria (R symbols), the earliest bin, the latest
bin, and the bin with the largest RMI value
were selected for each cell. B–D: population
distribution of these bins (B, earliest bins; C,
bins with largest RMI values; D, the latest
bins; all drawn to the same scale to facilitate
comparison). In each case, the gray bars in the
background show the distribution of the cells
across the bins in time-histogram form (right
y-axis) and the filled triangles denote the ac-
tual RMI values of individual cells in each bin
(left y-axis). Asterisk denotes the exemplar
cell in Fig. 2. RMI values �10 were rounded
out to 10 in all 3 panels. See RESULTS for
details.
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time window for analysis (36–134 ms [mean]). The distinction
between gratings and contours clearly underlay the separation
of the red cluster from the other 2 (green and blue) clusters,
whereas the selectivity for stimulus size and for specific angles
and curved stimuli may underlie the differentiation between the
2 (blue vs. green) contour clusters (see Hegdé and Van Essen
2003). For later bins, the clustering of stimuli was progres-
sively less pronounced, although still discernible in both the

MDS plot (Fig. 8E for the 280–300 ms window) and the
correlation matrix (Fig. 8B, panels 3 and 4), indicating that the
population response was substantially but not completely decor-
related after this point.

To assess the complexity of the population response during
each bin, we analyzed each correlation matrix using PCA (see
METHODS). The proportion of the data accounted for by the most
informative principal components, and the number of principal
components required to account for a criterion amount of the
data, are 2 measures of the dimensionality, or complexity, of
the data (see Kachigan 1991, p. 246–247). If the population
response during a given bin were perfectly decorrelated, each
principal component would be expected to account for 0.78%
of the total response variation (given a set of 128 stimuli).
Figure 9 shows the 10 most informative principal components
for each of the 15 bins. During the 0–20 ms bin, before the
response onset, the first 10 principal components together
account for only 46% of the variance. During the 40–60 ms
bin, when the population is maximally correlated (see Fig. 8,
B–D), the first principal component by itself accounts for 46%
of the variance, and the top 3, 5, and 10 components together
accounted for 78, 85, and 92% of the data, respectively. Thus
a relatively small number of response dimensions accounted
for most of the population response during the early transient
response. The complexity of the of the population response
increased markedly between 60 and 160 ms; between 160 and
300 ms, the first principal component accounted for 13–18% of
the variance and the first 10 components accounted for 58–
62% of the variance. We obtained qualitatively similar results
when these analyses were repeated using bins with equal spike
counts, described above (data not shown).

Together, these results indicate the population response was
relatively correlated, or low-dimensional, early in the response,
and significantly decorrelated (increased in dimensionality) in
the period between 60 and 160 ms after stimulus onset.

Temporal changes in the response profiles of
individual V2 cells

The decorrelations of the population response described
above might in principle result from a decorrelation of the
response profile of a subset of cells, or from a widespread
decorrelation across the population. To distinguish between the
2 scenarios, we measured the extent to which the response
profiles of individual cells changed over time. To do this, we
calculated the correlation coefficient r between the given cell’s
response during a given pair of bins for each pairwise combi-
nation of the 15 bins (see METHODS).

Figure 10A illustrates the changes in the response profile of
the exemplar cell over the course of the response relative to its
response profiles during each of the 4 earliest bins. The thick
solid line shows the r values across all bins measured relative
to the 20–40 ms bin, the earliest bin during which the cell’s
responses were both significantly elevated from background
levels and were significantly modulated (see Fig. 6A). The r
value during the next bin (40–60 ms bin) was 0.20, indicating
that the response profiles decorrelated substantially between
the 2 bins. In the subsequent bins, the r values stabilized at a
lower level (range, 0.06–0.17), slightly above the chance level
(horizontal arrow on the y-axis). Similar results were obtained
when the correlation coefficients were calculated relative to the

FIG. 7. Relationship between the time of maximum response vs. the time of
maximum response modulation. For each cell, the time of peak firing rate and
time of peak response modulation were calculated to the nearest millisecond,
and the statistical significance of the peaks determined, as described in
METHODS. Resulting values are plotted in the scatterplot according to whether
one or both values were statistically significant (inset). Diagonal represents the
iso-time line. Dashed lines denote a time interval of �20 ms from the iso-time
line. Histograms on either axis denote the bin distribution of the corresponding
time points. B: correlation between firing rate and response modulation.
Coefficient of correlation (r) between the firing rate vs. the RMI values across
all 15 bins was calculated for each cell. Distribution of r values for all V2 cells
is shown here in histogram form. Exemplar cell in Fig. 2 is denoted by an
arrow in A and by an asterisk in B.

3038 J. HEGDÉ AND D. C. VAN ESSEN

J Neurophysiol • VOL 92 • NOVEMBER 2004 • www.jn.org



40–60 ms bin (thick dashed line) or to the 60–80-ms bin (thin
dotted line), except that the average r values stabilized at a
higher level (mean r � 0.18).

Figure 10B illustrates the average change in the response
profiles (� cell-to-cell SE) for all V2 cells. These results were

qualitatively similar to those for the exemplar cell, except that
the magnitude of decorrelation over the course of the response
was somewhat less pronounced. Note that the SE of the r
values (error bars) changed little over time (range, 0.031–
0.036), suggesting that the decorrelation of the response was

FIG. 8. Temporal dynamics of the population response.
A: construction of the correlation matrix used in the pop-
ulation analyses. Each panel on left shows the responses of
V2 neurons (dots) to a selected pair of stimuli during the
40- to 60-ms bin plotted against each other. In either panel,
the arrow denotes the responses of the exemplar cell in Fig.
2, and the line denotes the best-fitting regression line.
Correlation coefficient r is a measure of the deviation of
the responses from this regression line. Right panel: mag-
nified portion of the correlation matrix for the 40- to 60-ms
bin plotted according to the color scale at far right. Icons
denote the relevant stimuli, oriented and numbered as in
Fig. 1. To construct the correlation matrix for a given time
bin, the r value from each possible pair of stimuli was
calculated and assigned to the corresponding element of
the correlation matrix (dashed arrows). Elements along the
diagonal from bottom left to top right represent the corre-
lation of the responses to a given stimulus with themselves
(r � 1.0). Note that the matrix is symmetric about this
diagonal, given that r(i, j) � r( j, i) for any 2 stimuli i and
j. B: correlation matrices for 4 selected bins, each plotted
according to the color scale in A. C: average r value (�SE)
during the different bins. D and E: MDS plots of the
correlation matrix during 2 selected bins (double-headed
arrows), both drawn to the same scale. Three clusters of
stimuli delineated by the MDS are highlighted using arbi-
trary colors: red, green, and blue.

FIG. 9. Principal components analysis
(PCA) of the population response. Correla-
tion matrix for each bin was analyzed using
PCA. Proportion of the data in the given
correlation matrix accounted for the 10 most
influential principal components is shown
here for each bin. For each bin, the total
variance in the data accounted for by the top
10 components together is denoted by the
arrow.
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widespread across V2 cells. If the decorrelation were attribut-
able to the changes in the response profiles of a small subset of
cells while the response profiles of the remaining cells stayed
largely unchanged, the cell-to-cell variation of the r values
would be expected to increase with decreasing mean r values.

The nature of the temporal changes in shape profiles were
diverse; we found no clear patterns across subpopulations of
cells in this regard. That is, given the response profile of an
individual cell during the early part of the response, it was not
possible to predict, with any accuracy, how the response profile
of the cell might change later in the response, other than the
trend toward decorrelation already discussed.

D I S C U S S I O N

The central finding of this study is that the shape information
conveyed by V2 cells changes significantly over the time

course of responses to static visual stimuli presented within the
classical receptive field. This was evident in each of several
measures, including sharpness of tuning (Fig. 4D), signal-to-
noise measures (Fig. 5), response profiles of individual cells
(Fig. 10), and stimulus-related correlations across the neuronal
population (Figs. 8 and 9). We also find that for many V2 cells,
the signal-to-noise ratio peaks relatively early in the response
(although often later than the peak in the firing rate itself), and
generally lower but statistically significant for the remainder of
the response (Figs. 6 and 7).

As noted in the INTRODUCTION, many previous studies have
addressed the temporal dynamics of various response metrics
used in other visual areas or sensory systems. In the visual
system, LGN (lateral geniculate nucleus) neurons temporally
decorrelate in response to natural movies, but not to white
noise, by a process involving linear temporal filtering charac-
teristics of neurons (Dan et al. 1996). In the visual cortex,
many previous studies have explored the temporal dynamics of
individual cell responses, especially in area V1 (see, e.g.,
Albrecht et al. 2002; Bredfeldt and Ringach 2002; Celebrini et
al. 1993; DeAngelis et al. 1993; Jones and Palmer 1987; Mazer
et al. 2002; Menz and Freeman 2003, 2004; Müller et al. 2001;
Ringach et al. 1997; Shapley et al. 2003) and in the inferior
temporal cortex (Edwards et al. 2003; Keysers et al. 2001;
Oram and Perrett 1992; Tovée et al. 1993). Recently, Müller et
al. (2001) analyzed the temporal dynamics of the signal-to-
noise ratio in area V1 of the anesthetized monkey and found
that V1 cells convey much more information during the initial
transients than during later periods of the same duration. They
reported time-dependent changes in the contrast response func-
tion but not in orientation tuning curves, and they found that
orientation tuning estimated from the first 150 ms of response
was indistinguishable from that estimated over the first 1,250
ms. In contrast, Zohary et al. (1990) reported increased orien-
tation discriminability as the integration window increased
from 60–100 ms, and Ringach et al. (1997) reported significant
time dependency of orientation tuning using a finer-grained
temporal analysis (10 vs. 50 ms bins). In the domain of
stereopsis, Menz and Freeman (2003, 2004) showed that bin-
ocular disparity tuning in cat visual cortex sharpens with time,
consistent with coarse-to-fine processing.

In the olfactory system, it has been recently reported that the
population response of zebrafish mitral cells to odors decorre-
lates over a period of 1 s or so (Friedrich and Laurent 2001,
2004). This is qualitatively analogous to our observations,
except that it occurs over a much slower time course (	800
ms) and is not associated with an increased sharpness of
tuning.

An interesting possibility is that the broadly tuned transient
responses of V2 neurons provide a relatively low-dimensional
representation that subserves a rapid, relatively coarse-grained
initial shape analysis (e.g., predator or not?), whereas the more
sharply tuned sustained responses provide a higher-dimen-
sional representation that subserves finer-grained discrimina-
tive capacities (e.g., which prey is better?) (see Churchland et
al. 1994; Field 1995; Friedrich and Laurent 2001; Roweis and
Saul 2000; Seung and Lee 2000; Tennenbaum et al. 2000; also
see Edwards et al. 2003, and references therein).

Many lines of psychophysical evidence support the notion
that coarse-grained object recognition can occur on a faster
timescale, whereas finer-grained object recognition is slower

FIG. 10. Temporal changes in the shape selectivity profile of individual cells.
Shape-selectivity profile of each cell during a given bin was compared with its
shape selectivity profile during each of the other bins using correlation coefficient
r. This process was repeated for each of the 180 cells for each of the 15 bins. This
plot shows the r values relative to the 4 consecutive bins spanning 0–80 ms. A: r
values for the exemplar cell in Fig. 2. B: average r values (� cell-to-cell SE) for
all 180 cells. In either panel, the thick solid line denotes the average correlation
between the cells’ responses during the 20- to 40-ms bin with the responses during
each of the other bins, along with correlation with itself (average r value of 1.0 �
0.0; top); the other 2 lines show similar measurements relative to the 40- to 60-ms
bin (thick dashed line), and 60–80 ms (thin dotted line). Arrowheads on the y-axis
denotes the average randomized r value from 4 � 15 � 103 rounds of random-
ization of the responses of the exemplar cell (A) or all cells. Note that the y-axis
scales for the 2 panels are slightly different.
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(Donders 1969; Luce 1986; Posner 1978). Reaction times and
processing times tend to be shorter for simple detection or
categorization tasks than for discrimination tasks (Fabre-
Thorpe et al. 1998; Liu et al. 2002; Luce 1986; Posner 1978;
also see Treisman 1988). In addition, when visual stimuli are
flashed only briefly, followed by a mask or as part of a
continuous image sequence, subjects can often accurately de-
tect the presence of a given visual object, but not the precise
features of the object (Fabre-Thorpe et al. 1998; Fize et al.
2000; Keysers et al. 2001; Reynolds 1981; Thorpe et al. 1996).

Neural mechanisms of response decorrelation

What aspects of neural circuitry might account for the
changes in sharpness of tuning and the progressive decorrela-
tion across the neuronal population? Saturation of responses
during the initial transient could be one contributing factor, but
our analysis of response variance relative to the mean suggests
that the relative refractory period is not the main factor.
However, there might be alternative forms of saturation (e.g.,
involving contrast normalization mechanisms) that are consis-
tent with our data.

A response decay after an initial transient can arise from
depression of cortical excitatory synapses (Markram and Tso-
dyks 1996; Müller et al. 2001; Varela et al. 1997). However,
the fact that V2 responses decorrelate while they decrease in
magnitude suggests that the decay is not simply a function of
generalized, nonspecific synaptic depression. Response decor-
relations in visual cortex may also arise from recruitment of
intracortical inputs that shape classical receptive field re-
sponses, from context-dependent effects outside the classical
receptive field (see Vinje and Gallant 2000), or as a function of
recent stimulation of the receptive field (see Müller et al. 1999;
also see Nelson 1991).

Time as a coding dimension

Given that the shape of tuning profiles of V2 neurons can
vary over time, it is obviously of interest to know whether the
processes used to decode this information in other visual areas
must take these characteristics into account. The notion that the
temporal pattern of sensory responses is used to code mean-
ingful information has been suggested by others for the visual
system (McClurkin et al. 1991; Richmond and Optican 1990)
and the olfactory system (Friedrich and Laurent 2001). This
notion of temporal structure in mean firing rates is distinct from
temporal coding hypotheses based on synchronized firing
among subsets of neurons (for reviews, see Gray 1999; Salinas
and Sejnowski 2001; Usrey and Reid 1999). However, both
types of temporal coding, though intriguing, remain controver-
sial (Averbeck and Lee 2004; Shadlen and Movshon 1999) and
are difficult to test incisively.
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