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ABSTRACT
The last three decades have seen major strides in our understanding of neural mechanisms of high-
level vision, or visual cognition of the world around us. Vision has also served as a model system
for the study of brain function. Several broad insights, as yet incomplete, have recently emerged.
First, visual perception is best understood not as an end unto itself, but as a sensory process that
subserves the animal’s behavioral goal at hand. Visual perception is likely to be simply a side
effect that reflects the readout of visual information processing that leads to behavior. Second, the
brain is essentially a probabilistic computational system that produces behaviors by collectively
evaluating, not necessarily consciously or always optimally, the available information about the
outside world received from the senses, the behavioral goals, prior knowledge about the world,
and possible risks and benefits of a given behavior. Vision plays a prominent role in the overall
functioning of the brain providing the lion’s share of information about the outside world. Third,
the visual system does not function in isolation, but rather interacts actively and reciprocally with
other brain systems, including other sensory faculties. Finally, various regions of the visual system
process information not in a strict hierarchical manner, but as parts of various dynamic brain-wide
networks, collectively referred to as the “connectome.” Thus, a full understanding of vision will
ultimately entail understanding, in granular, quantitative detail, various aspects of dynamic brain
networks that use visual sensory information to produce behavior under real-world conditions. ©
2018 American Physiological Society. Compr Physiol 8:903-953, 2018.

Didactic Synopsis
Major teaching points
� Visual perception is essentially an inferential process, in

that the visual system infers the likely interpretation of a
given image by evaluating the various underlying statisti-
cal (i.e., probabilistic) factors. This is not to say that the
inferences are necessarily optimal or that they are made
consciously.

� For last several decades, neurophysiological research has
been guided by the implicit assumption that the goal of
visual processing is to help construct a veridical internal
representation of the external visual world. This, along with
earlier methodological difficulties in monitoring the activ-
ity of large number of neurons in multiple areas, led to a
couple of decades of neurophysiological research focused
on delineating functional specialization of individual visual
areas, which has to do with figuring out “which visual area
does what” in representing the external visual world.

� More recent research, however, suggests that a “goal-
oriented connectomic” view is a better framework for
understanding visual processing as a sensory process
wherein large number of different brain areas act, not as
individual areas but as parts of as a larger network, to imple-
ment the animal’s behavioral goal at hand.

� The networks that implement a given behavior vary dynam-
ically and probabilistically depending on various factors,

including the sensory information, behavioral goal, possi-
ble rewards or punishments, etc.

� Vision is not a single process, but a collection of processes.

� Even though vision is the dominant sensory modality for
humans and other primates, it does not function in isola-
tion, but interacts actively with other senses and the brain
systems that implement behavior.

Introduction
Overview
Few exercises in scientific chauvinism are better grounded in
truth than the conceit that vision is the mother of all senses.
Vision is the dominant sensory modality of humans and other
primates, presumably because it can provide detailed and
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behaviorally relevant information about the outside world,
and from safe distances at that. It is far easier to find and flee
danger, and gain eating and mating opportunities, with vision
than without. It is undoubtedly because of the behavioral util-
ity of vision that a substantial portion of the brain is devoted
to the processing of visual information. By any reckoning, we
primates are visual animals.

The preeminence of vision as a sensory faculty has meant
not only that understanding the neurophysiological mecha-
nisms of vision has been understood to be a worthy goal unto
itself but that vision has served as a useful model system for
understanding brain function at large, and served as a template
for understanding other sensory systems. But, as is frequently
the case of accumulating wisdom primarily due to the labors
of others, one of the biggest lessons of visual research over
the last few decades has been that studying vision for its own
sake tends to produce a misleading and warped picture of how
the brain works.

Scope and organization of the review: Broad
operational principles of high-level vision for
nonexperts
A short review like this cannot provide an exhaustive account
of all aspects of high-level vision. For a more exhaustive treat-
ment of the subject, the reader should consult the references
listed in the Further Reading section below. This review has a
much more modest goal. It simply aims to give the reader an
intuitive feel for high-level vision by presenting a “highlight
reel” of what we currently know and do not know about how
high-level vision works. It is worth remembering that while
there is much that we do not yet know about high-level vision,
it is part of what makes vision so exciting to study.

This review is primarily meant as a pedagogical tool to
help provide a critical understanding of the field to intelligent
nonexperts, but may also be useful to practitioners in the field
as one neurophysiologist’s point of view about the current
status and, even more importantly, the future direction of the
field. This meant focusing not only on what we know about
high-level vision but also on some key issues about which
we know surprisingly little. I have tried to present both these
aspects of the field in a way to incite further thinking and
perhaps discussion.

An exercise in capturing the “gist” of a vast field will nec-
essarily entail an arbitrary and subjective selection of topics
to cover and studies to cite. For a fuller, more technical under-
standing of the topics discussed, readers should consult the
references cited here, and many excellent books on the topic
of vision (a selected few of which are listed below), and the
various citations therein. Also, not all the studies cited in this
review represent the latest ones on a given topic. Indeed, some
of the studies discussed in detail represent some of the ear-
liest studies on that topic, especially in cases where I felt it
was more helpful to the reader to appreciate the trend-setting
nature of the studies.

Most of the psychophysical studies of vision have been
carried out in humans, and almost all of the relevant micro-
electrode recording studies have been carried out in animal
models, especially awake, behaving monkeys.1 Relatively lit-
tle is known about the neuronal mechanisms of high-level
perception in “lower” vertebrates, such as rodents, birds,
zebrafish, and invertebrates such as insects. This happens to
give us a convenient excuse to largely sidestep these ani-
mal models and the attendant thorny questions about the
extent to which such animals can be thought to have high-
level visual cognition in the conventional sense of the term
(240, 243, 253, 302). It is worth remembering, however, that
such animal models probably represent a major future trend
in neurophysiological research, both because these models
are more amenable to genetic manipulations, and because it
is becoming increasingly difficult to carry out neurophysio-
logical research in monkeys and other “higher” mammalian
species.

What is high-level vision?
“High-level vision” is not a specific process. Rather, it is a
term of art that vision scientists use for describing a loose
collection of processes that help the viewer to understand,
and operate in, the visual environment (95, 337). Low-level
vision involves measurements of basic properties of the reti-
nal image. For instance, measuring the basic properties of the
abstract painting in Figure 1, such as the color or brightness

Figure 1 The abstract painting Interchanged (1955) by Willem de
Kooning. At a reported purchase price of US $300 million, it is one
of the most expensive paintings in the world. See text for additional
details.
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Figure 2 The importance of recurrent processing in visual perception. When viewed for the first
time, this two-tone “Mooney” image appears to be an unrecognizable pattern of black and white
blobs. That is, it is hard to interpret this image based on sensory information (i.e., bottom-up or
feed-forward processing) alone. However, after viewing a full grayscale or color counterpart (for
which see Figure 3A—which, being smaller in size, has no pixel-to-pixel correspondence with the
above image), the Mooney image becomes easy to interpret. Note that viewing the disambiguating
image rapidly, drastically, and enduringly alters our perception of the Mooney image, although the
Mooney image itself remains physically unchanged. Feed-forward theories of vision cannot help
explain such phenomena. Recurrent (or “reentrant”) neural signals bring to bear such top-down
influences as prior knowledge and the behavioral context to help constrain the interpretation of
the visual image. Learning to interpret Mooney images can be understood as an extreme case of
knowledge-mediated disambiguation that is part and parcel of normal visual perception (51,82,
125,142).

of various image regions, the contrast, or differences, of color,
brightness, etc. between different parts of the image, the ori-
entation and curvature of the various edges and surfaces, etc.,
are typically thought of as low-level visual processes. By con-
trast, recognizing the artistic message of the painting involves
high-level visual processes. From psychophysical and neu-
rophysiological viewpoints, low-level visual processes have
been much better understood so far compared to high-level
processes.

Of course, from a visual information processing stand-
point, real world is far more complex and dynamic than the
image in Figure 1, with multiple objects, often moving and
dynamically interacting with each other and the viewer. To
operate in the real-world, we must make sense of it, which is
domain of high-level vision. Low-level processes of making
relatively simple, spatially localized measurements of image
properties are necessary, but are not sufficient.

All our complex visual abilities are functions
of high-level vision

Figures 2 through 6 illustrate some operating principles of,
and computational issues in, high-level vision. For instance,
consider the two-tone image (often referred to as a “Mooney”
image) in Figure 2. At first glance, there appears to be noth-

ing more to the image than just a pattern of black-and-white
splotches. But take a quick look—as brief a glance as you can
make it—at the image in Figure 3A and look back at Figure 2.

The black and white splotches probably will make some
sense now. Repeat this process. You will probably see more in
Figure 3A with each glance. Note also that your understand-
ing of Figure 2 also evolves over time, and that this happens
because your brain brought to bear the information it gleaned
from Figure 3A to disambiguating Figure 2. This is a very
rapid, “online” form of perceptual learning (or sensory learn-
ing; also see below), and it helps illustrate the fact that visual
images are fundamentally ambiguous, and we use our prior
knowledge of the visual world to help make sense of what is
in front our eyes.

For both images, your understanding of the image evolved
with time, even though the image itself remains unchanged.
This helps illustrate the principle that vision is neither a static
nor an instantaneous process, but rather a dynamic process
where our understanding of the scene evolves over time (over
the course of a few hundred milliseconds, as we will see
below). It also straightforwardly demonstrates that vision is
not a deterministic process either, where the input—in this
case, the visual image—solely determines the outcome. If
this were the case, the percept would have remained the same
while the stimulus remained unchanged.
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(A)

(B)

(C)

(D)

Figure 3 Some complexities of natural images and the information processing required to making sense of them. Panels A through D show
real-world scenes that help illustrate some of the complexities of such scenes. For instance, there are multiple objects of the same type in each
picture. They all vary greatly in image size, illumination, shadows, occlusion, viewpoint, etc. But the visual system recognizes them as objects of
the same kind. In other words, the brain must be able to discard a variety of image features as irrelevant to recognizing the images. Note that,
in case of each scene in this figure, our understanding of the scene evolves over time. Note also that the objects, their spatial relationships, and
even the semantic similarities and differences among them are such that the percept that each scene elicits is more than just the sum of the parts.
In addition, each picture contains implicit cues to motion and/or depth that static, 2D pictures such as these do not do justice to. In fact, natural
scenes differ from each other and from the relatively simple stimuli used in many a vision study, such as a sinusoidal grating on a neutral gray
background, in myriad ways. Studies have shown that the visual system is adapted to contend with the statistics of natural scenes (307), so that
neural responses to “artificial” stimuli may provide a substantially different and potentially misleading picture of how the brain works. On the
other hand, note that our visual system performs very well in recognizing scenes with “unnatural” statistics, such as the street scene in panel C
and the indoor scene in panel D, even though it evidently did not encounter the “unnatural” statistics of human-made objects until quite recently
on the evolutionary time scale. This is because the brain is quite good at adapting to a variety of nonoptimal inputs.

In many real-world visual scenes, information about an
object of interest is diminished because of poor lighting or
shadows (see, e.g., Fig. 3A) or is simply missing, due to
occlusion (Fig. 4A). Indeed, occlusion is ubiquitous in the
real world. But the visual system generally has little trouble
recognizing familiar objects from just a few tell-tale cues in
the image (Fig. 4A-C). This is because the brain can bring to
bear what it knows about the visual appearance of objects in
the world (Fig. 4A and B) and/or what it remembers about its
experiences (Fig. 4C) to make up for what is missing in the
image. Obviously, this would not happen if visual perception
were purely image-driven.

Visual images can also elicit powerful emotions (Fig. 5).
While we are not accustomed to thinking emotions as the

business of vision researchers, the inescapable fact is that the
ability to experience humor, beauty, love, hatred, or horror are
a part of what makes us human and emotions self-evidently
influence our behavior. That is, the brain’s high-vision facul-
ties are intricately liked to its affective faculties.

Figures 2 through 5 also help illustrate some of the
additional complexities of real-world scenes that high-level
visual processes must contend with (also see (36)). The visual
images in these figures, while themselves static, point to the
fact that visual scenes change dynamically, because objects in
the scene tend to move, as does the viewer (and the viewer’s
head and the eyes, all potentially independent of each other),
which in turn changes the retinal image. The order in which
the viewer’s eyes move to the various regions of the image
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(A) (B) (C)

Figure 4 Visual system can often recognize objects with great precision with very little information. A veridical description of the object, even if
it were possible, is not necessary. (A) In the picture on the left, very little of the dog is visible. But we have little trouble recognizing the dog. Many
probably can even readily name the breed of the dog. (B) Few would have trouble recognizing the person from the picture. (C) The tell-tale hat.
For most readers, this picture simply shows a hat hung on some plumbing. But this famous picture, on the cover of the very first issue of Physics
Today in May 1948, showed the famous “pork pie” hat of J. Robert Oppenheimer, the father of the atomic bomb. Therefore, the picture was highly
topical and was readily understood at the time. But for most of us living today, this picture requires either some historical knowledge or explanation.
Thus, our perception of a visual image is influenced by a great many nonvisual factors. Neurophysiological understanding of such influences on
cognition represents a major challenge.

adds another level of complexity, because it changes the tem-
poral sequence of information processing. For instance, in
case of Figure 5, the eyes are initially likely to move to visu-
ally “salient” regions of the image, such as local areas with
high luminance contrast (86,332), and it is likely to take addi-
tional scrutiny of the image for the larger import of the vulture
to “sink in.”

Oftentimes, there are multiple objects in the scene, where
one object may be of current behavioral interest (i.e., “tar-
get”) and other objects are of lesser behavioral interest (“dis-
tractors”). It is known that, even when the distractors do
not occlude or otherwise interact with the target, their mere
presence in the vicinity can influence whether or how we
perceive the target, a phenomenon known as crowding or

Figure 5 There is more to vision than feed-forward processing. This picture of an unknown little
girl was taken by South African photojournalist Kevin Carter in the famine-stricken South Sudan in
March 1993. The girl had reportedly collapsed from weakness on her way to a United Nations
food center. (Reproduced, with permission, from The Vulture and the Little Girl by Kevin Carter.
Pulitzer Prize for Feature Photography, 1994.) Note that feed-forward processing by itself would
completely miss the import of the picture.
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clutter (157, 202, 251, 252, 336, 360).2 In some cases, the
visual appearance of the target object itself varies from time
to time, owing to changes in viewpoint, viewing distance, illu-
mination, or other viewing conditions. The visual system can
typically recognize a given object regardless such incidental
changes in its visual appearance, a phenomenon known vari-
ously as object invariance, perceptual constancy, or invariant
recognition (26). Since incidental variations in viewing condi-
tions are common and unavoidable, organisms simply cannot
survive in the real world without invariant recognition.

What machine vision reveals about biological
high-level vision

The neurophysiological mechanisms of object invariance
remain poorly understood, but it is clear that the underlying
computations are dauntingly intricate (159, 275). Nonethe-
less, advances in machine vision have devised computers with
nontrivial, real-world object invariance. A notable example of
this is self-driving cars (see Fig. 6A). Briefly, such machines
learn the properties of the real world by a process called
deep learning (DL; for a list of abbreviations, see Table 1).
In DL, a computer program, typically implemented as some
type of neural network, learns the abstract statistical patterns
in real-world scenes from a large set of examples where the
various objects in the scene are labeled (such as “parking lot,”
“traffic cone,” “curb,” “wheel stop,” etc. in Fig. 6A). Note
that this process is directly analogous to how we learn to
recognize objects and operate in the world during develop-
ment. Computers trained in this fashion can recognize real-

world objects invariantly enough to operate robustly in the real
world (173, 193, 199, 275). In doing so, such machines help
illustrate the computational problems that biological systems
must solve to operate in the real world.

There are a large number of other instances where
machines can operate with great success in the real world,
that is, such machines have many, although not yet all, of the
faculties of high-level vision (199). The current successes of
machine vision suggest that we are on the right track. After
all, if we can broadly mimic the neural processes in these
computers to produce high-level visual performance in the
real world akin to that of humans and other visual animals,
we must be doing something right.

The current shortcomings of intelligent machines also
help highlight some additional principles of biological high-
level vision. Almost all of these shortcomings have to do
with one or both of following: First, successful machines tend
to be hyperspecialized, and are typically unable to general-
ize beyond a very limited realm of operation. For instance,
while self-learning cars can generalize across a vast array of
traffic scenes, they are currently limited to operating in con-
ventional road traffic conditions; for instance, they tend to
fare poorly at off-road driving (16). IBM Watson trained to
compete in the Jeopardy! Television game show cannot be
used to detect anomalies in medical images, and vice versa
(53, 247). This inability to generalize is shared by all current
machine vision systems, a limitation that humans do not have
to the same extent. Many modern websites exploit this fact
to distinguish humans from machines using the CAPTCHA
login tests (Fig. 6B; see legend for details) (121, 326).

(A) (B)

Figure 6 (A) A self-driving car. (B) Two instances of the CAPTCHA (or Completely Automated Public Turing test to tell Computers and Humans
Apart) internet device designed to prevent automated logins (121, 326). In the example on the left, the website asks the user to perform a
straightforward object categorization task, namely distinguish pictures of people wearing glasses from pictures of people without glasses. This
tends to be quite successful in preventing machines from logging on to the website. However, this success is not so much because it would be all
that difficult nowadays to train a suitably designed computer program to distinguish the two categories of human faces (see, e.g., (2, 191)), but
essentially because, at present, such programs tend to be hyperspecialized, and tend not to generalize beyond their training sets to other visual
objects or tasks (121,199). That is, such an “intelligent” program, once trained to tell aforementioned types of faces apart, can be readily stumped
at present by rather slight changes in the underlying categories (panel B, right), or the task (not shown) (2,191). However, recent research suggests
that the problem of overspecialization of intelligent machines is likely to straightforwardly surmountable, so that CAPTCHA strategies such as the
one illustrated in this panel are unlikely to be effective for long. That is, machine vision is getting ever better at mimicking human high-level vision
(199).

908 Volume 8, July 2018



Comprehensive Physiology High-Level Vision

Table 1 List of Abbreviations

2-DG, 2-deoxyglucose

21∕2 D, 21∕2 dimensional

3D, three-dimensional

AIT, anterior infereotemporal

BM, BrainMapping (database)

BOLD, blood oxygenation level-dependent

Cal S, calcarine sulcus

CAPTCHA, Completely Automated Public Turing test to tell Computers
and Humans Apart

CC, cortico-cortical pathways

CIT, central inferotemporal area

Col, S, collateral sulcus

CP, choice probability

cpd, cycles per degree

CRF, classical receptive field

CS, central sulcus

CTC, cortico-thalamo-cortical pathways

DCM, dynamic causal modeling

DF, dorsal foci (human)

dMFC, dorsal medial frontal cortex

EEG, electroencephalogram

ERMF, event-related magnetic field

ERP, event-related potential

FDΔ, dorsolateral prefrontal region

FDv, ventrolateral prefrontal region

FEF, frontal eye fields

FFA, fusiform face area (human)

fMRI, functional magnetic resonance imaging

GC, Granger causality

GPe, Globus pallidus, external portion

GPi, Globus pallidus, internal portion

ICA, independent components analysis

IOG, inferior occipital gyrus

IPS, intraparietal sulcus

IT, inferior temporal/inferotemporal visual area (macaque)

ITC, inferior temporal/inferotemporal cortex (human)

Lateral S, lateral sulcus

LFP, local field potential

LGN, lateral geniculate nucleus

LOC, lateral occipital complex (human)

MEG, magnetoencephalography

MFC, medial frontal cortex

MR, magnetic resonance

MT, middle temporal area

MST, medial superior temporal area

MTL, medial temporal lobe

MVPA, multivoxel pattern analysis

nCRF, nonclassical receptive field

OFC, orbitofrontal cortex

PET, positron emission tomography

PFC, prefrontal cortex

PHC, parahippocampal cortex

PIT, posterior inferotemporal area

RGC, retinal ganglion cells

rCBF, regional cerebral blood flow

rsfMRI or R-fMRI, resting state functional magnetic resonance imaging

RSN, resting state network

TE, temporal area

TEO, temporooccipital area

TMS, transcranial magnetic stimulation

TP, tempoparietal junction

SNr, substantia nigra pars reticulate

SNc, substantia nigra pars compacta

SOA, stimulus onset asynchrony

STN, subthalamic nucleus

STS, superior temporal sulcus

STP, superior temporal polysensory area

SVM, support vector machine

TE, temporal area (macaque)

TE, temporo-occipital (macaque)

TP, temporo-occipital junction

V1,V2, V4, or V5, visual area 1, 2, 4, or 5

VEF, visually evoked potential

vMFC, ventral medial frontal cortex

VSD, voltage-sensitive dye

VTA, Ventral tegmental area

YAH, “you are here”
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The second main current shortcoming of intelligent
machines is that they do not have the same high-level seman-
tic understanding of scenes as we do. This is an important
limitation, because as noted above (e.g., Fig. 5), semantic
understanding of the scene is intimately related to high-level
vision, and vice versa. There is broad agreement that when
we recognize an object, we assign it, however implicitly or
abstractly, a category label (126, 138, 276). While machine
systems do associate objects with the corresponding labels,
indeed, they learn from training examples in which objects
are suitably labeled—they cannot be said to understand the
meaning of the labels.

The assertion that intelligent machine do not truly under-
stand the meaning of words may seem surprising, because
“intelligent assistants” such as Siri, Alexa, Cortana, etc.
respond adequately a large diversity of verbal commands and
questions, as though they truly understand language. But this
is a mistaken impression; the intelligent machines simply
learn to probabilistically associate a given word labels in the
training set with a given set of likely responses. In this sense,
they have no better understanding of the words than a “talk-
ing” parrot.

Parenthetically, it is worth noting that the nature of cate-
gory labels in animals remains unclear. However, it is obvi-
ous enough that visual recognition amounts to some type
of categorization in animals too, because they can differen-
tiate predator from prey, preferred food from nonpreferred
food, etc.

A brief, historical caricature of the conventional,
outdated framework of vision: Vision for vision’s
sake
Conventional theoretical framework: Veridical
representation of the visual world through
bottom-up processing of the retinal image

To understand what we currently know and do not know about
how vision works, it is useful to briefly review how we got
here.3 Until the 1980s, neurophysiological studies of vision
focused, by and large, on the mechanisms of “early vision,” or
the processing of low-level image characteristics in the early
parts of the visual pathway. While a rich body of literature
existed—some of it more than a century old, characteriz-
ing high-level perception of visual objects and scenes at the
perceptual level—neither neurophysiological techniques nor
a conceptual framework for addressing high-level questions
were available at the time. Beginning in the 1980s, advances
in neurophysiological recording techniques, a better under-
standing of the anatomical layout of the visual processing
pathway, along with a candidate computational framework
for understanding visual perception as a whole, made it pos-
sible to pursue questions about high-level visual perception.

With some notable exceptions (see, e.g., (15,22,23)), most
of the earlier theories implicitly or explicitly took a “vision for
vision’s sake” approach, wherein visual cognition was an end

Figure 7 An outline of Marr’s theory of visual processing. See text
for details.

unto itself. The computational framework that hugely influ-
enced vision research in general, and visual neurophysiologi-
cal research in particular, was the work of David Marr (1945-
1980) and his colleagues, distilled in Marr’s 1982 book Vision
(214). The basic idea behind Marr’s model was brilliant, and
was well ahead of its time. But it is now clear, in retrospect,
that the main thrust of his framework is not only wrong but
also misleading. Nonetheless, it is important to understand
this framework to have a contextual understanding of visual
neurophysiological research since the publication of his book.
Marr’s framework of vision posits, to a first approximation,
that the visual system builds a veridical internal representa-
tion of the visual world using a stepwise processing of the
information in the retinal image (see Fig. 7).

The model consists of several successive levels of visual
information processing, with the output of each level of pro-
cessing serving as the input to the next higher level of pro-
cessing. Marr’s model can be understood as follows: The
visual system first evaluates local, low-level characteristics,
or “primitives,” of the retinal image. Using these primitives as
building blocks, the visual system constructs a surface level
representation, or a “21∕2 D sketch,” of the objects in the
image, that describes the local orientation of the surface (for
a list of abbreviations, see Table 1). Using the 21∕2 D sketch,
the visual system then builds a more or less veridical 3D rep-
resentation of the objects in the visual world (“3D sketch”).

Marr’s model is hierarchical, in the sense that it posits
that vision is a more or less stepwise process. Marr’s model is
essentially a feed-forward or “bottom-up” model of vision, in
the sense that it conceives of vision as driven by the sensory
input, where the information entering the bottom level of the
processing hierarchy (i.e., the retina) travels up the various
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levels of hierarchy, where a more-or-less veridical represen-
tation of the real world is constructed at the highest levels
of processing. This “feed-forward thinking” essentially envi-
sions visual processing as a one-way conveyor belt, where
information processed at earlier stages of visual processing
is passed on to progressively higher stages of processing, so
that a veridical representation of the visual world emerges.
For all practical purposes, it ignores “top-down” factors, such
as attention, memory, learning, etc., which can be thought
of arising from the high-level centers of the brain and acting
on the visual information processing at lower levels. Visual
cognition is conceived as the function of information repre-
sentation in the highest level of visual processing, and earlier
stages of visual processing play no role in visual cognition.
It paints a modular picture of visual processing, wherein the
visual system initially takes apart different types of visual
information, such motion, shape, etc., processes them more
or less separately, and then puts it all together (see below). It
does not directly contemplate how vision subserves behavior,
because it does not suppose vision is meant to subserve behav-
ior. Rather, vision is an end unto itself; its job is to construct
a true representation of the outside visual world. Presumably,
when the visual information is needed to guide some behavior,
the brain systems that subserve the given behavior requisition
the visual system for the information.

Conventional view of neural mechanisms:
Feed-forward processing of visual information

How does the brain actually implement the above scheme of
information processing? Two broad sets of neurobiological
findings seemed to fit well with the hierarchical, modular
nature of Marr’s model. Almost all of these insights came
from animal research, mostly in macaque monkeys, but also
from cats and other animals.

The first set of findings is more neuroanatomical than
neurophysiological. Starting in the 1980s, it became clear
that the primate visual cortex was not a monolithic expanse of
gray matter. Rather, it was organized as a number of distinct
visual areas, more or less clearly distinguishable from each
other based on a variety of principled criteria (184, 342).4

By the time a few dozen of these areas were identified, it also
became clear that the primate visual system is organized as an
anatomical hierarchy (for overviews, see (98, 344)) (Fig. 8).

Briefly, as articulated by Felleman and Van Essen in their
highly influential work on the topic (98), visual anatomical
hierarchy refers to the fact that when one keeps track of which
visual area receives feedforward input from, and in turn sends
output to, which other areas, and which areas receive feedback
information from which other areas, one can organize the
known visual areas in the brain in a stepwise fashion, that is,
as a hierarchy (98, 141, 216). Since this anatomical hierarchy
seemed to fit well with Marr’s hierarchical model of visual
information processing, it seemed (and was) reasonable to
posit that the anatomical hierarchy acted as a substrate to a

hierarchical processing of visual information in the primate
brain.

It is important to note that the notion of the anatomi-
cal hierarchy itself has never been called into question. It is
indisputable that, given a set of principled anatomical criteria
(see (98)), the visual system can indeed be organized into a
hierarchy of visual areas. Rather, the subsequent debate out-
lined below has been about whether the visual processing is
also hierarchical, and whether it meaningfully parallels Marr’s
model.

A second set of findings, primarily neurophysiological,
concerned the functional organization of visual areas. Neu-
rophysiological experiments on this topic had started as far
back as the 1960s. Until quite recently, a vast majority of
these neurophysiological findings came from single electrode
neurophysiology, in which a single electrode is inserted trans-
durally into a given brain area of interest, and extracellular
potentials, or spikes, from well-isolated single neurons are
painstakingly recorded one neuron at a time, often in an
awake animal engaged in a visual task.5 Needless to say,
this necessitated studying one visual area at a time. While
these neurophysiological studies provided an understanding
of individual neurons with unmatched spatial and temporal
resolution, it was nonetheless a keyhole view of the visual
system, which made it difficult to gain a holistic understand-
ing of the workings of neuronal ensembles in individual areas,
let alone neural networks in the brain at large. These experi-
ments showed that individual neurons in a given visual area
tended to be selective to a narrow set of visual features, such
as (depending on the area) orientation, color, motion, faces,
etc. Thus, it seemed reasonable to posit that the visual sys-
tem takes apart the various types of visual information in the
image, and processes them more or less separately and in
parallel in different visual areas that specialize in the pro-
cessing of various visual features, so that visual processing is
distributed across the various areas of the visual cortex.

These empirical neurobiological findings seemed to fit
well with Marr’s aforementioned notion of visual process-
ing, wherein the visual system initially takes apart different
types of visual information, processes them more or less sep-
arately, and then puts it back together into a holistic per-
cept (137, 271, 297).6 Moreover, it was reported that visual
sensory information was processed in two distinct, parallel
pathways (225) (Fig. 9). One pathway, referred to as the
ventral pathway, occipitotemporal pathway, or the “what?”
pathway, was thought to specialize in form processing, and
thus played a major role in object recognition. The second
pathway, referred to as the dorsal pathway, occipitoparietal
pathway or the “where?” pathway, was thought to specialize
in the processing of spatial information, and thus played a
major role in spatial vision.7 Taken together, these studies
appear to support the notion that the visual system took apart
the various primitives of the visual image and processed it in
different visual areas, just as Marr’s model predicted.

We realize, with the benefit of hindsight, that some of these
scientific conclusions were colored by our collective inability,
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Figure 8 Visual anatomical hierarchy in the macaque monkey described by Felleman and Van Essen,
1991 (98). Each colored rectangle represents a distinct cortical visual area. The open rectangles at top
denote higher cortical areas that are not considered primarily visual area. The two gray rectangles at
bottom denote the retinal ganglion cells (RGC) and the lateral geniculate nucleus (LGN). Lines connecting
the cortical areas denote interconnections, usually reciprocal, between a given pairs of areas. The various
brain regions are represented in a tiered, or hierarchical, fashion based on objective anatomical criteria,
most important of which are the laminar patterns of feed-forward and feedback connections (also see
(98, 216, 343)). For additional details and abbreviations, see Felleman and Van Essen, 1991 (98). An
alternative formulation of the hierarchy, originally formulated by Mishkin, Gross, and their colleagues
(130) (also see (78,129)) is largely similar, but it parcels the cortex into many fewer areas and recognizes
fewer interconnections. Also, some the visual area names are different in this scheme. For instance, areas
AIT and CIT (anterior and central inferotemporal areas, respectively) in the Felleman and Van Essen scheme
are equivalent to area TE (temporal area) in the Gross et al. scheme, and area PIT (posterior inferotemporal
area) in the Van Essen scheme is equivalent to area TEO (temporooccipital area) in the Gross et al. scheme.
Both schemes are used in this review, based on the scheme used by the study in question. Reproduced,
with permission, from (98).
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(A)

(C)

(B) (D)

Figure 9 Our evolving understanding of the functional organization of the primate visual system. Panels A and B depict our view of the two
main visual processing streams in the macaque brain in the early 1980s. (A) The dorsal and ventral visual pathways as originally formulated
by Mishkin and colleagues in 1993 is denoted by solid arrows (OB → OA → PG pathway being the anatomically dorsal pathway, and OB →
OA → TEO → TE being the ventral pathway) (225). The continuation of these pathways to FDΔ and FDv, respectively (dashed arrows) represented
the collective outcome of many additional studies. (B) Anatomical locations of the various regions, some renamed according to a more modern
naming convention (188). (C) Key changes in the receptive field properties of neurons along the ventral pathway. Areas are color-coded as in
panel B. Panel D summarizes our understanding of the same pathways some 30 years later, as summarized by Kravitz and colleagues in 2013
(188). Note that it is clear that the two pathways have turned out to be far more interconnected than previously envisioned. What is lost in terms of
pedagogical simplicity is more than made up for by the nuance and granularity of this network picture, presaged decades ago by Kerrigan and
Maunsell (221). Self-evidently, far more remains to be learned, including how these networks interact with other networks in the brain and subserve
behavior. Adapted, with permission, from (188). Human brain (not shown) is also purported to have two evolutionarily homologous processing
pathways, although there is even less empirical information to support this notion.

for technical reasons, to envisage the activity of whole brain
networks using our understanding of the activity in individual
visual areas—our inability to see the forest for the trees. Thus,
it is not so much that these experimental findings in and
of themselves were wrong, but that they missed the bigger
picture.

Moreover, they unwittingly reinforced the flawed “feed-
forward thinking” outlined above (57, 315). The myriad of
reasons why the feed-forward thinking is flawed will be out-
lined in context below, but suffice it to make two general
observations about it here. First, the sheer prevalence of feed-
back and lateral connections among brain areas, and the fact
that such connections tend to be conserved over the course of
evolution indicates they must play functionally crucial roles in
information processing (98,164,270,344,345). Second, even

Marr’s own field of machine vision has abandoned this purely
feed-forward approach in every successful modern applica-
tion of machine vision to the real world, such as self-driving
cars, as alluded to above (for reviews, see (50, 73, 233)).

Both the strength and weakness of models of the real
world is that they simplify its complexities. Marr’s model had
the additional disadvantage of being wrong. But to discard it
altogether would be to throw out Marr’s baby with the bathwa-
ter. The most useful lesson of Marr’s unquestionably brilliant
work for contemporary practitioners and students of neuro-
physiology is that anything worth doing in neurophysiology
is worth doing within a computational framework, the more
explicitly the better. It was just that Marr’s model happened
to be an unfortunate case where theory got too far ahead of
experiments.

Volume 8, July 2018 913



High-Level Vision Comprehensive Physiology

(A) (B)

Figure 10 What’s to infer? Is not it all there in the image? The answer is no. Retinal image is
simply a 2D pattern of image intensities. Image intensities of a particular image are represented in
panel A as a color-coded surface plot, where the height and color of a point denotes the image
intensity at that point. Note that when the image is represented in this fashion, it makes no sense to
us. But when the same image is represented as corresponding variations in image intensities (panel
B), we readily recognize it as an image of a brook in the woods. However, the information in the
two representations is exactly the same. The difference is that, in panel B, the image is in an input
“format” that our eyes can process. Beyond that, the inferential processes to “make sense” of the
pattern of intensities are exactly the same.

A Modern Framework for
Understanding Vision: Visually Guided
Behavior is Statistical Inference
Implemented by Brain Networks
In recent years, it has come to be broadly appreciated that the
retinal information is inherently ambiguous, and makes lit-
tle sense without further processing and interpretation by the
brain. That is, with the exception of a few, exceedingly sim-
plistic laboratory stimuli that can be safely neglected for our
purposes (35,213,283,361), it is impossible to “reverse engi-
neer” the retinal image to faithfully recover actual the visual
scene that gave rise to the retinal image. This is because under
real-world conditions, for any given retinal image, there are
many (oftentimes an infinite number of) real-world scenes
that could have generated the image, and it is impossible
to identify the unique scene that generated the given image
based solely on the retinal image. Therefore, seeing is often
referred to an “ill-posed” problem (258). The aforementioned
complexities of the image make solving the problem so much
harder.

One simple way to intuitively appreciate why the retinal
image is not “self-explanatory” is to think about the nature of
3D perception. The retinal image is a completely a flat, 2D
image, in which the third dimension (i.e., depth) is missing. If
the visual system treated the retinal image as self-explanatory
information that needed no further interpretation, we would
perceive the world as a flat, depthless entity. Yet, this is not
what happens; we indeed perceive the world around us in vivid
3D. This because the visual system implicitly recognizes that
the retinal image, while it is itself 2D, contains a variety of

implicit cues about depth, and exploits these cues to infer the
third dimension. It contains a variety of implicit cues about the
third dimension, that is, depth (153). But depth information
must still be inferred from the implicit depth cues. Thus, the
very fact that we see in 3D at all demonstrates the fact that
the brain is an “inference machine” that does its best to make
sense of, or interpret, incoming sensory information that is
inherently ambiguous. For another demonstration that retinal
image makes little sense without proper interpretation, see
Figure 10.

In recent years, the aforementioned conventional frame-
work has been largely supplanted by probabilistic infer-
ence as the theoretical approach of choice for studying and
understanding brain function in general (for overviews, see
(80, 83, 178, 365)). This contemporary view, that perception
and action are essentially various forms of statistical infer-
ence, had its beginnings in the notion of “unconscious infer-
ence” that Hermann von Helmholtz (1821-1894) articulated
with astonishing prescience (108). The modern probabilis-
tic framework simply mathematically codifies Helmholtz’s
brilliant intuition. Given its widespread and increasing use in
vision research, it is important to gain an intuitive understand-
ing of these approaches.

The quantitative underpinnings of probabilistic ultimately
lie in the classical Bayes’ law of conditional probability. Since
the Bayes’ law is the mathematically correct way of describ-
ing any given set of conditional relationship among proba-
bilistic variables, the term “probabilistic inference” in gen-
eral has come to be synonymous with “Bayesian inference”
(80, 83, 178, 365). The variables that underlie brain function
are inherently probabilistic because of the probabilistic, or
“chancy” nature of real-world phenomena, the ambiguities
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(A) (B)

Figure 11 Visual illusions help illustrate the inferential nature of visual perception. They also demonstrate that the inference need not be a
deliberate, volitional, or conscious process. (A) Ames room. Two people stand in opposite corners of the room. One appears to be much taller
than the other, even though they are roughly the same height. Instead, it is the room that is distorted to produce this illusion. Picture courtesy of Ian
Stannard, Flickr. Reproduced with permission. (B) Hollow-mask illusion. This picture shows the front of the mask (right) and the hollow back of the
mask (left). Nonetheless, both look like normal, convex faces. For a video demonstration of the hollow mask illusion, see https://www.youtube.com/
watch?v=sKa0eaKsdA0. Note that, in this video, the mask appears to flip its direction of rotation at the same time the other side of the mask begins
appearing. Theoretical studies show that visual illusions are often perfectly rational inferences given the evidence (see, e.g., (108,357)).

in the sensory information, and the inherent noisiness of the
neural hardware (118). For this reason, it is widely appreci-
ated that the probabilistic approach is the correct quantitative
framework for formulating the inferential problems that con-
front the brain.8

The Bayesian formulation of visual perception is that what
we think of seeing is really a process by which the brain infers
what is “out there” in the external world based on all the infor-
mation it has, including the information that comes in through
the senses such as vision. In other words, visual perception is
the process by which the brain comes up with an interpreta-
tion of the situation at hand and a course of action that best
fits all available information at hand, including the sensory
information, its prior knowledge of the nature of the external
world,9 and possible consequences of various actions or lack
thereof. Thus, this framework implicitly recognizes that it is
neither possible nor, for that matter, necessary for the brain
to construct a veridical internal representation of the external
world. The brain can and must do its best with the probabilis-
tic and ambiguous information it has. It also implicitly rec-
ognizes that visual perception is a probabilistic process, and
not a deterministic process where a certain set of conditions,
such as a given input image, foreordain a given perceptual
outcome (178, 185). Figures 1 through 6 illustrate some of
the key visual phenomena that a strictly deterministic feed-
forward model cannot explain, but the Bayesian framework
straightforwardly can.

This is not to say that a given inference is necessarily a
deliberative, volitional, or even conscious process, or that the
“purpose” of vision is to just make optimal inferences about
the visual sensory input. It is important to remind ourselves
that biological sensory systems exist in the service of behav-
ior, regardless of whether the behavior itself is consciously
planned and executed. For instance, when we open the door

by reaching for and turning the knob—a process that is well
captured by a Bayesian explanation—we do not consciously
infer the shape or position of the knob or calculate the force
vector needed to turn the knob. We just turn the knob with-
out being conscious of the underlying calculations and the
resulting inferences.

It is also worth noting that the brain’s interpretation of
the information at hand is not always correct. Visual illusions
help illustrate the fact that inferential process can be “gamed”
to produce counterfactual percepts (see, e.g., Fig. 11). In fact,
the underlying inferences can be so strong that it can be hard to
consciously override or “veto” the brain’s inference of the data
at hand, even when we know that the given percept is illusory
or incorrect (see, e.g., Fig. 11). This helps illustrate that the
inferential process is neither a primarily conscious process nor
is it always swayed by conscious inferences. The Bayesian
framework also accounts for how the brain “falls for” visual
illusions (178, 185). It turns out that illusions occur because
the brain tends to attach more weight to sensory information—
which, in the case of illusions, is not only ambiguous but also
misleading—than to the top-down cognitive information that
can clear up the ambiguity. Thus, the brain goes with the
illusory percept, because it is the interpretation that best fits
the sensory data at hand. Thus, the brain is by no means a
hyperrational system.

To get an intuition of these aspects of brain function, it is
useful to think of it as akin to the day-to-day functioning of
the US government. It is a huge and complex system whose
behavior can be understood by a set of more or less sensible
operational principles. In most situations, it more or less does
the right thing, except when it does not. It does things that
may appear smart or stupid, but it usually does not do so
consciously, nor is it inclined to change its ways in light of
disabusing information, however correct.
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Note that the Bayes framework, in principle, addresses
the computational shortcomings of the aforementioned feed-
forward framework, in that it explicitly allows for the system
to evaluate all available bottom-up and top-down information
in a dynamic fashion. Moreover, it does not necessarily limit
the system to a single pass through the process, as the feed-
forward model implicitly does. In fact, it is straightforward to
envisage scenarios where the system makes multiple passes
through the process, testing and refining hypotheses about
the possible outcomes of the neural computation during each
pass using an “analysis by synthesis” approach that explicitly
allows for feedback and lateral inputs to the process (365).

Finally, it is worth noting that the term “Bayesian frame-
work” by itself does not refer to not a particular hypothesis,
model, or theory of how the brain works; it is simply a term of
art that describes a set of mathematical methods using which
such hypotheses, theories, and models can be constructed and
empirically tested. In other words, it is not that brain imple-
ments the Bayesian framework, but that what the brain does is
best understood and studied in terms of the Bayesian frame-
work. Bayesian inference is not an implementation plan for
the brain, but a tool, or “language,” to describe brain function.

Neural computations are implemented by dynamic
interactions among brain regions
How, then, does the brain implement this probabilistic infer-
ence? Recent findings provide increasing support for a con-
nectomic view, which posits that brain functions are imple-
mented through the dynamic changes in the connectivity
within and across brain regions organized as networks. In
other words, to understand how the brain works, we must
understand not only how individual brain regions process
and represent (i.e., carry or convey) information but also
how different brain regions “talk” to each other as parts of
a larger brain network, and what they are telling each other
(for overviews, see (295, 314)). It is increasingly clear that
understanding the various brain networks and the patterns of
network interaction, or connectivity, is a key to understanding
brain function.10 To help understand how brain interactions
are studied, it is helpful to understand the two different types
of connectivity that are commonly reported in neurophysio-
logical studies.

Functional versus effective connectivity among
brain regions

In addition to the methods that can be used for characterizing
the anatomical (i.e., structural or physical) connections among
brain regions, methods also exist to characterize connectiv-
ity based on the activity of brain regions. As noted above,
two types of activity-based connectivity can be distinguished.
Functional connectivity is defined as “statistical dependencies
among remote neurophysiological events” (104). Neurons or
neuronal ensembles can exhibit functional connectivity for

many different reasons. For instance, the initial, predomi-
nantly stimulus-driven response transients11 tend to be cor-
related across nearby neurons, because they represent simul-
taneous activation elicited by the same underlying stimulus.
Response correlations also reflect shared changes in activity
mediated by anatomical connections. Intrinsic connectivity
inferred by resting state functional magnetic resonance imag-
ing (fMRI) (see below) is a form of functional connectivity
(104).

Effective connectivity refers “explicitly to the influence
that one neural system exerts over another, either at a synap-
tic or population level” (1, 104, 314). Connectivity revealed
by task-related fMRI is a form of effective connectivity. Both
functional and effective connectivity imply a level of synchro-
nization of various brain regions.

Different neurophysiological techniques tend to report
synchronization at slightly different time scales. fMRI studies
tend to report synchronization at fairly slow time scales (hun-
dreds and thousands of milliseconds). Whether and to what
extent this synchronization is related to the response synchro-
nization of neurons and neuronal ensembles at much faster
time scales (a few milliseconds) reported by microelectrode
studies remains unclear (see (41, 297)).

To help make the distinction between the two types of con-
nectivity clearer, it is useful to consider the following analogy.
Imagine you are at a large swimming pool. The pool is strewn
with many buoys, many of which are tethered together in
small subsets. There are also many swimmers swimming in
the pool. You are trying to understand how the waves are trav-
eling in the swimming pool by studying the undulations of
the buoys and the swimmers. You are analogous to the neuro-
physiologist trying to understand how information flow causes
undulations of neuronal responses in different brain regions.
In the swimming pool, you observe that certain subsets of
buoys (think brain regions) tend to bob up and down in sync
with each other, but out of sync with other subsets of buoys.
This correlated undulation occurs because the given subset
of buoys happens to be tethered together, or riding the same
waves, or both. The buoys did not cause each other’s undu-
lations. Rather, their undulation is caused by an unrelated,
common source. In other words, their correlated activity does
not imply causation. Thus, the buoys that undulate together
are functionally connected.

But you also observe that the undulations of specific sub-
set of buoys is correlated with the strokes of a swimmer (think
a different combination of brain regions), typically because
(in the present example) they happen to be close to the swim-
mer. The given subset of buoys is effectively connected to the
swimmers’ strokes, because the activity of the latter is causing
the activity of the former. This analogy can also help make
explicit two additional aspects of the above definitions. First,
the two types of connectivity represent functional definitions
that neuroscientists use to characterize the observed patterns
of activity, and do not represent biological mechanisms per se.
Second, effective connectivity is a stricter concept that sub-
sumes the concept of functional connectivity, in the sense that
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regions that are effectively connected are also functionally
connected (but not necessarily vice versa). This also means
that the contributions of one or both of types of connectivity to
a given set of raw neural responses have to be mathematically
teased apart. Fortunately, many user-friendly toolkits that can
do this are currently available (24, 99, 267).

A Word to the Wise: Nothing in
Neuroscience Makes Sense Except in
Light of Behavior
Given the framework outlined above, “How do we see?” is
really a misleading question, both because it implies that
vision is a single process with a unitary explanation, and
because it implies that seeing is an end unto itself, that vision
exists for its own sake. In light of the current data, broadly
summarized in the following sections, it makes more sense
to ask how vision serves behavior. It also makes more sense
to posit that visual perception and the related phenomena of
visual awareness or consciousness reflect read-outs of the net-
work states or, in more cognitive terms, introspection about
the information being processed.

Theodosius Dobzhansky’s famous dictum that “nothing
in biology makes sense except in the light of evolution” (81)
indisputably applies to neurobiology as well. Behavior is the
phenotypical, or outwardly, manifestation of neural systems;
it is the substrate upon which evolution operates. Therefore, a
useful reformulation of Dobzhansky’s principle for the neuro-
scientist’s pocketbook is that nothing in neuroscience makes
sense except in light of behavior.

In trying to study, understand, and explain the structure
and function of neural systems, it is important to bear in mind
that neural systems have evolved to help the organism func-
tion in its environment, that they are often optimally adapted
to the statistical properties of that environment, and that they
were not designed to subserve a computational end, in the way
computational machines are designed to serve computational
ends. Of course, this is not to say that computational analy-
ses are not useful to neurophysiologists. Quite the contrary.
Essentially all of the major advances in our understanding
of high-level vision have come from neuroscientists embrac-
ing the computational sciences. An illustrative example is
the ideal observer analysis, which determines performance
of a computationally optimal observer in a given information
processing task, say, discriminating between two objects, esti-
mating the direction of illumination of scene, or estimating
the optimal trajectory of visually guided hand movement (for
reviews, see (12,106,108,178,186)). It is generally informa-
tive to compare the performance of ideal observers with that
of actual observers, human or otherwise. It turns out that in
many cases, the performance of the human brain hews very
close to the computational ideal, but in many other cases it
does not. In fact, deviations of actual observers from the com-
putational ideal tend to be even more informative, because

one has to account for why the neural system deviates from
the computational ideal. But in doing so, it is always impera-
tive to keep in mind the fact that neural systems are evolved
systems, not designed systems (107).

Neural systems have evolved primarily to subserve
the four F’s
To paraphrase the immortal formulation of Paul Maclean (as
recounted by Patricia Churchland in (56)), animals who are
good at the four fundamental F’s—feeding, fleeing, fighting,
and, um, reproducing—tend to fare well from an evolution-
ary point of view.12 Since better neural systems make for
better F’s, neural systems have evolved to help deliver better
F’s. That is, neural systems that better subserve the animal’s
behavioral goals tend to be more successful over the course
of evolution.

The aforementioned evolutionary principles collectively
have two main practical imports for the neurophysiologist:
First, they highlight the fact that the ultimate “design prin-
ciple” by which the brain has come to exist and function
is evolution, and not necessarily computational performance
per se (see, e.g., (349)). We will revisit this principle below
in the context of efficient coding. Second, they also highlight
the fact that, while the human brain bears an evolutionary
relationship with the brains of other animals, there is no sense
in which the human brain is more evolved than the brain of
any other living being. In other words, evolutionary ladder,
that is, the notion that human being represent the pinnacle
of evolution and the “lower” species are correspondingly less
evolved, is a myth (105, 257). Neither is brain evolution a
goal-driven process whose “goal” is to produce brains that
are capable of increasingly complex computation (163, 322).
Rather, brains capable of more complex computations, such
as human brains, sometimes spread in numbers. This caveat
is helpful, because it keeps us from mistaking the human
brain as somehow an improvement over, say, contemporary
monkey brains, and monkey brains as an improvement over
contemporary rodent brains. Of course, there are many objec-
tive measures by which human brains are more complex than
monkey brains, which in turn are more complex than rodent
brains, but evolution does not necessarily entail increasing
complexity, or vice versa (85, 92, 249, 327). In summary, our
focus on the human brain, while eminently principled and
justifiable on other grounds, can amount to rank speciesism
when carried too far.

Another Word to the Wise: Vision is Not
a Unitary Process but a Collection of
Processes
One of the assumptions in the question “How do we see?”
is the assumption that there is a single answer. But there is
no reason to believe that vision is a single process in any

Volume 8, July 2018 917



High-Level Vision Comprehensive Physiology

principled sense of the term. To cite an admittedly extreme
“proof of principle” example, in blindsight, subjects respond
to visual stimuli without consciously perceiving them. Indeed,
human subjects with blindsight often insist they are blind.
When the striate cortex (area V1) is removed or blocked in
monkeys, the animals can still accurately perform visual dis-
crimination tasks (4,61,280). This is because the image infor-
mation from the retina also reaches many other brain regions
in the midbrain and thalamus that remain intact even when
V1 is removed in its entirety (4, 61, 280, 364). Obviously,
these monkeys “see” by any principled definition of seeing,
but the process by which they see is radically different from
the way monkeys with intact V1 see. Obviously, vision is a
many-splendored process that works in more ways than one.

One can cite any number of less extreme examples from
various branches of vision research to help illustrate the fact
that the nature, and neural mechanisms, of vision differ signif-
icantly based on the task, visual stimulus, subject’s behavioral
state, level of learning, etc. For instance, the information that
must be gleaned from the image in Figure 3A will be drasti-
cally different based on whether the task is to wade into the
water hole in the foreground, drink the water, determine the
ages and gender of the animals in the scene, or search for
berries in the vegetation in the background. A single-purpose,
“one-size-fits-all” process will not only be inefficient for all
tasks but it is likely to be insufficient for any given task. Note
also that for each task, our visual system tends to discard (or
at least disregard) a whole lot of task-irrelevant information.
For instance, if the task is solely to drink the water from the
water hole, anything beyond the water hole is unlikely to reg-
ister very keenly. Since the nature of task-relevant and task-
irrelevant information will vary from one task to the next,
the system that consistently discards some aspect of scene
information will be caught wrong-footed when the discarded
information suddenly becomes task-relevant. For reviews of
these ideas, see (57, 58, 359).

The notion that vision is many processes, not just one,
is important, because it straightforwardly implies that there
are multiple underlying corresponding neural mechanisms.
Of course, the various visual processes and the underlying
mechanisms share many fundamental similarities, some of
which will be examined below.

Rapidly Evolving Repertoire of
Neurophysiological Techniques has
Changed the Face of Neuroscience
The spatial and temporal resolution afforded by microelec-
trode recording is matched by no other neurophysiological
technique. But until rather recently, microelectrode neuro-
physiology had a limited spatial reach, and was largely lim-
ited to studying a few neurons in a single brain region at a
time. Advances in technology now make it possible to simul-
taneously study the activity of multiple neurons and neuronal

ensembles in multiple brain regions (Fig. 12). However, it is
still not possible to carry out whole brain studies using these
methods, which can make it hard to see the forest for the trees.
Moreover, since microelectrode neurophysiology is invasive,
it is largely limited to being carried out in animals. Under rare
circumstances, they can be carried out in suitably anesthetized
human surgical patients who are undergoing unrelated brain
surgery for the medical benefit of the patient (for reviews, see
(90, 231)).

Local field potentials carry much information about
the responses of, and interactions among, neuronal
ensembles
Local field potential (LFP) represents the summed electrical
activity of multiple nearby neurons within a relatively small
volume of neuronal tissue, typically 50 to 350 μmol/L from
the tip of the recording electrode (200). It is important to note
that the extracellular potentials, or spiking activity, make only
a limited contribution to LFPs. It is thought that LFPs are gen-
erated by synchronized synaptic currents arising from cortical
neurons (17, 239). LFPs are somewhat similar to EEG (elec-
troencephalography) signals in this regard (269). Because the
information carried by spikes and LFPs are mutually quite
nonredundant, and because collecting both types of data is
often quite straightforward in modern electrophysiological
setups, it is generally quite useful to look at both whenever
possible.

Whole brain imaging techniques provide a better
view of the forest, but not so much of the trees
One of the main advantages of whole brain imaging tech-
niques is that they can be carried out noninvasively, and afford
a view the whole forest. Just as important is the fact that,
since they are noninvasive, they can be carried out in human
subjects performing complicated tasks and making detailed
and nuanced perceptual reports. On the other hand, whole
brain imaging techniques have significant limitations of their
own. EEG uses the electrical activity measured at the level
of the scalp to infer the underlying brain activity. It is one of
the least expensive of the whole brain imaging methods, and
offers a very high temporal resolution, on the order of mil-
liseconds. However, the spatial resolution of the EEG signals
(referred to as evoked response potentials, or ERPs) is quite
poor (see (208)). Magnetoencephalography (MEG) is analo-
gous to EEG in the limited sense that it also measures brain
activity through sensors mounted on the scalp, but differs from
EEG in that it can pick up only a subset of the neural activity
detected by EEG (for reviews, see (136, 158, 246, 291)). The
temporal resolution of event-related magnetic fields (ERMFs)
is comparable to that of ERPs. But MEG has better spa-
tial resolution, especially at greater depths (136, 158). MEG
and EEG both suffer from the “inverse problem,” which
refers inferring the underlying brain activity by working back
from the observed, ambiguous signals. This is somewhat like
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Figure 12 The spatiotemporal domain of the methods available for the study of the functional organization of nervous system
in 2014, compared to the methods available in 1988 (inset). Each colored region represents a range of spatial and temporal
resolutions for a given method. Open regions represent measurement techniques; filled regions, perturbation techniques; EEG,
electroencephalography; MEG, magnetoencephalography; PET, positron emission tomography; VSD, voltage-sensitive dye; TMS,
transcranial magnetic stimulation; and 2-DG, 2-deoxyglucose. Redrawn, with permission, from (290).

listening to the din of a crowded room behind closed doors,
and trying to figure out who is doing the talking, what they
are saying, and where in the room they are. Recent advances
in data analysis techniques have now made this problem quite
tractable, and MEG and EEG often yield results that can be
validated by independent methods (136, 158).

fMRI measures neural activity indirectly, through changes
in the blood oxygenation level-dependent (BOLD) activity
caused by neural activity. It has a spatial resolution of up to
a millimeter, but has a relatively poor temporal resolution of
a few seconds. It might seem that this temporal resolution is
too low to be useful for measured neurophysiological activity
which, after all, occurs at millisecond levels. Nonetheless, as
we will see below, much has been learned about brain function
using fMRI by itself or in combination with other techniques
(see (21, 207, 281)).

In addition to major improvements in the techniques for
collecting neuronal data, there have been major advances in
the field of analyzing neural data as well (for overviews,
see (34, 63, 237, 366)). “Big data” approaches are making
a huge difference in our understanding of brain function, and
the role of informatics is going to broaden going forward.
Moreover, the future of neurophysiology is increasingly mul-
tidisciplinary and, by necessity, collaborative. For instance,

the neurophysiologist will likely benefit from collaborations
with computational neuroscientists to help pose the question
and model the data, biostatisticians to help analyze the data,
etc. But professional success in neurophysiology will mean a
working understanding of all these fields, not in the least to
develop and maintain effective collaborations.

Visual information processing involves two types
of computation: Estimation and categorization
From a computational viewpoint, information processing
involved in vision can be described in terms of one or both
of the following two fundamental types of computation: Esti-
mation and categorization. Estimation is the calculation of
some continuous, or analog, property of the image, such as
the luminance of an image region, the saturation of a cer-
tain color in the image, orientation of a given line segment,
the depth of a given point in the scene, or the time of an
event. As a general matter, the visual system is quite bad at
estimating absolute visual metrics, but generally much better
at estimating relative or comparative metrics. For instance,
when we see two objects in depth, we perform quite poorly at
estimating their absolute distance from each other or from us
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(see, e.g., (18)). But we are much better at determining which
object is closer to us. The reason why our brains perform
better as “comparison engines” as opposed to “measurement
engines” is presumably because comparisons of space and/or
time parameters are more behaviorally useful than absolute
measurements. Of course, our brains are not foolproof when
it comes to comparisons either, and are better at some type of
comparisons than others (18, 153).

The other type of computation involves categorization
or classification, that is, making categorical perceptual judge-
ments, such as “predator or prey?” or “up or down?.” Note that
categorical judgements are not necessarily always two-way, or
binary, classifications. Under natural viewing conditions, they
often involve multiway classifications: for instance, judging
the ethnicity of a person.

Subsequent sections will briefly present some of the high-
lights of our current fragmentary understanding of the neuro-
physiological mechanisms of high-level vision.

Feed-Forward Visual Processing Involves
Progressive Refinement of Behaviorally
Relevant Information
Along the visual feed-forward pathway, that is, at progres-
sively higher levels of the visual anatomical hierarchy, the
response properties of visual neurons change in some impor-
tant ways. While the response properties vary substantially
within any given visual area and overlap substantially with
the response properties of neurons in other areas (especially
at adjacent levels of the hierarchy), four broad, overall trends
are evident (143, 188, 189, 314) (also see Fig. 9C). First, the
receptive fields of visual neurons get progressively larger,
from about 0.5◦ in diameter within the foveal representation
of V1 to about 10◦ to 40◦ in AIT, located at the anterior tip
of the temporal lobe. Second, the neurons tend to become
progressively more selective for more complex visual prop-
erties (see below for details). Third, the latency of visually
evoked response tends to get progressively longer. Fourth, the
responses tend to be more subject to modulatory influences
of the visual context (see below) and of cognitive factors such
as attention, behavioral goal and reward; and show greater
plasticity (i.e., learning-dependent changes in response).

It is worth repeating the aforementioned caveat that,
while these overall trends are apparent across the visual
feed-forward pathway considered as a whole, the areas—
especially at adjacent levels of the hierarchy—overlap sub-
stantially enough that no single visual area can be said to
have a unique, diagnostic set of response properties that dis-
tinguishes it from its neighbors on the hierarchy. That is, no
known response property changes in a strictly stepwise or
hierarchical fashion.

A large number of studies have examined these aspects of
visual information processing in various regions of the visual
system. Summarizing all of them is well beyond the purview

of this review. In this section, we will focus instead on some
representative empirical findings about visual processing that
help illustrate the larger, general principles of visual system
function.

“Early” visual regions play key roles in high-level
vision, and are not limited to processing low-level
image information
As alluded to above, a large proportion of the cerebral cor-
tex is devoted to the processing of visual information. In the
macaque monkey, where most of the invasive neurophysiolog-
ical studies of the visual system have been carried out to date,
up to 50% of the cerebral cortex is responsive to visual stimuli
(98,341,344). In humans, about 30% of the cerebral cortex is
directly responsive to visual stimuli (127). In macaques, the
visual cortex is parcellated into a number of visual areas. In
humans, these parcellations are typically referred to as visual
regions.13

Visual processing of low-level properties of the image,
or image primitives, such as contrast edges, orientation, and
direction of motion, will be addressed by other reviews in
this volume (see, e.g., “Lower Visual Pathways” and “Color
Vision”), and will not be revisited here. Note that this does not
allow us to leapfrog over the early cortical stages of feedfor-
ward visual processing, such as the retinotopic visual regions,
so called because the neural responses in these regions system-
atically vary according to the retinal location of the stimulus.
It is indeed true that the retinotopic regions, such as V1, V2,
V3, V3A (in macaques) or V1, V2, V3, V4v (in humans)
play key roles in processing low-level image properties. But
to assume that their prominent role in feed-forward process-
ing of sensory information precludes them from playing an
important role in high-level vision is to fall prey to the “feed-
forward thinking” outlined above. It is now abundantly clear
that retinotopic visual regions are a key part of dynamic brain
networks, and as such play important roles in visual cognition.

Indeed, responses of individual neurons in V1, which rep-
resents the earliest stage of cortical processing, can accurately
reflect what the viewer is perceiving, which is not what one
would expect if low early visual areas were devoted solely to
the processing of low-level visual features. In an influential
neurophysiological study, Logothetis and colleagues showed
that during binocular rivalry, responses of individual neu-
rons in monkey V1 accurately reflect the reported percept of
the monkey (33, 201, 206). Briefly, in binocular rivalry, two
disparate images are shown to the viewer, one to each eye
(Fig. 13A). If the views from the two eyes are similar, as it
is during normal viewing, the brain fuses them together into
a stereoscopic 3D percept. But if they are too different to
be fused to a single, sensible percept (i.e., if the stimulus is
dichoptic), only one of the images is perceived at a time, with
the percept switching to the other image at random intervals.
The investigators presented a grating oriented clockwise at
45◦ to one of the eyes and concurrently presented a grating
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Figure 13 Neuronal responses in monkey visual area V1 during binocular rivalry. See text for details. Adapted, with permission, from (33).

oriented counterclockwise at 45◦ to the other eye. Neurons in
V1 tend to be selective for orientation, so that a given neuron
was a priori likely to respond differently to the two gratings
when presented separately. But in this case, the gratings were
being presented simultaneously and continuously, so that the
stimulus itself did not change. The monkey was previously
trained to report, by pulling a suitable lever, which way the
grating it saw was oriented (201,206). As expected, the mon-
key reported randomly alternating percepts indicating that,
at the perceptual level, the binocular rivalry was working as
expected (the bar along the x axis in Fig. 13B, bottom). In
many V1 neurons studied, the response of the neuron tracked
closely with the reported percept, so that the activity was
higher during one of the percepts than the other. Note that,
since the stimuli themselves remained unchanged, the stimuli
themselves could not have caused the changes in the neu-
ronal response (33, 201, 206).14 The finding that individual
neurons in V1 can reflect a high-level phenomenon such as
the viewer’s (in this case, the monkey’s) percept was novel,
in part because it disproved the notion that early visual areas
are involved solely in the processing of low-level properties
of the image.

Functional MRI studies have found comparable effects in
human V1 during rivalry (259). Conversely, studies in both
monkeys and humans have found that many visual areas in the
higher levels of the visual hierarchy also play role in binocular
rivalry, although the network connectivity patterns associated
with rivalry are yet to be fully delineated (33, 39).

“Early” visual areas are also known to play significant
roles in other high-level visual processes. For instance, many
“early” visual regions play a role in figure-ground segregation
(i.e., the perceptual process whereby an object of behavioral
interest is perceptually distinguished from the background)
and perceptual grouping (i.e., the perceptual process whereby
different image elements are perceived as a larger, more holis-
tic image element) (139, 273, 277). They also play a key role
in perceptual grouping (i.e., the complementary of process of
mentally grouping related parts of a scene), both of which
are important aspects of high-level understanding of visual
scenes (Fig. 14) (260, 273).

Many fMRI studies have shown that responses in many
retinotopic visual regions are larger when visual recognition
is unsuccessful relative to when it is successful. This may
represent a form of error-coding (or predictive coding) where
the activity in the low-level regions represent the “cognitive
residual” or the visual information left unaccounted for by
visual perception (304, 324). As also discussed below, the
lateral geniculate nucleus of the thalamus plays a key role
in reducing the redundancy of information in natural visual
scenes. In other words, high-level vision is by no means the
exclusive domain of high-level brain regions.

Early visual regions also play a significant role in visual
perceptual learning (3,93,113,148,289,335,355). Perceptual
learning, or sensory learning, is a distinct form of learning by
which the ability of sensory systems to respond to stimuli is
improved through experience, typically in adults. It remains
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Figure 14 Figure-ground segregation and perceptual organization. (A) How many circles can you see in this
image? In this image, referred to as the Coffer Illusion, you should be able to see 16 circles. Figure courtesy
of Dr. Anthony Norcia, Stanford University. Reproduced with permission. (B) Camouflage is an extreme case
of figure-ground segregation, where the object of interest is hard to recognize even when “in plain view.” This
image shows two variants of the pepper moth Biston betularia, one black and the other with light peppered
coloring. The black variant is effectively camouflaged against colored tree bark whereas the light variant is
easy to recognize (i.e., it “pops out”). The opposite is true when the same two variants are seen against a
background of light bark and lichens. The black variant emerged for the first time in the industrial midlands of
Britain in the 19th century, where tree barks were turning black with industrial soot. Soon the black variants
became the more common variant, because the predators of the moths had much greater success breaking
the camouflage of the lighter variants because it was harder for the lighter variants to find light backgrounds
to camouflage themselves against. This was an instance of the prey “gaming” the predators’ high-level visual
faculties to enhance its own survival (179,334). Figure from Ford, E.G. (1977) Ecological Genetics. Springer.
Used with permission.

unclear precisely how sensory learning in adults (or adult
plasticity) differs from learning during development.

In the visual domain, skills ranging from discrimination
of low-level visual features (e.g., orientation, contrast, direc-
tion of motion of depth) to high-level recognition of objects
(e.g., “Labrador retriever or golden retriever?”) and scenes
(e.g., estimated property values of a neighborhood) can be
improved through perceptual learning. As alluded to above,
perceptual learning is a prerequisite for perception—the brain
needs to learn what an object “looks like” before it can rec-
ognize it. There is no perception without perceptual learning.
Indeed, the precise effects of perceptual learning in early
visual areas continues to be matter of considerable debate and
study (for reviews, see (110,352)). There are some reasons to
suspect that perceptual learning affects early sensory areas in
the auditory and somatosensory pathways differently than it
seems to affect early visual areas.

The neural mechanisms of perceptual learning are not
fully understood. Neurophysiological studies in macaques
have shown that perceptual learning occurs even at ear-
liest stages of cortical processing, that is, in area V1
(111,113,284,335). Human neuroimaging studies using fMRI
and EEG have found broadly comparable results have found
in early visual areas, including V1 (262,285,352). In general,
neural responses in higher visual areas tend to show greater
adult plasticity (101, 151, 266, 306, 329, 363).

A detailed examination of the neural mechanisms of per-
ceptual plasticity is beyond the purview of this review. For
additional information on this topic, readers should consult

the relevant reviews cited above and the review “Network
Supervision of Adult Experience and Learning Dependent
Sensory Cortical Plasticity” in this series (32).

Brain regions in monkeys and humans do not
necessarily have a one-to-one correspondence
As noted earlier, much of what we know about the neural
mechanisms of high-level vision comes from studies in mon-
keys and humans. As noted in the previous section, many
of the original monkey neurophysiology findings have been
repeated in humans, typically using noninvasive neuroimag-
ing methods. The functional similarity between monkey and
human visual processing can be particularly striking in early
visual areas, where the responses are retinotopic. Many early
visual regions, for example, V1 and V2, have come to be
referred to by identical names between the two species.

It is therefore tempting to assume that monkey brain
regions have exact counterparts in humans and vice versa,
especially when they have identical or similar names. But it
is important to remember that such direct comparisons can be
unwise. Human and monkey brains are related to each other by
virtue of having evolved from a common evolutionary ances-
tor. It is clear enough that, in evolutionary terminology, mon-
key and human brains are homologous organs, just the way
human hands are homologous to bird’s wings (149,210,330).
But it would be a mistake to assume that every substructure
in the hand, every muscle or bone, has an exact counterpart
in a bird’s wing, or vice versa. Some structures, such as hairs
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and feathers, have no counterpart in the other species at all. In
other words, individual brain regions in human versus monkey
brains do not necessarily have a one-to-one correspondence,
just like the fingers in human versus panda forelimbs do not.15

Strictly speaking, it is impossible to be certain as to
whether any single region in the human brain has an exact
evolutionary homolog in the monkey brain or vice versa. This
is because homology is defined solely based on common evo-
lutionary origins. Thus, ascertaining the homology of, say,
rhesus macaque visual area V2 with human V2 would neces-
sitate examining the V2 of their common ancestor that lived
25 to 28 million years ago (274) but, of course, is now extinct.
Besides, the human brain has many more distinct brain regions
than the monkey brain, so that that is a priori evident that there
is no one-to-correspondence at the level of individual brain
areas of the two species.

There are indeed some cases where individual brain
regions seem to have selectivity for similar visual properties
(e.g., selectivity for faces) and seem to occupy similar places
in the information processing pathways. But it is important to
bear in mind that such properties do not amount to being evo-
lutionary homologies, or evolutionary correspondence, any
more than the wings of a fly correspond to the wings of a bird.
It is also important to remember that, generally speaking, the
criteria that have been used to define regions in monkey brains
and human brains are quite different. Human brain regions
have been defined mostly based on differential activation to
stimuli or task conditions (e.g., face vs. house) or patterns
of correlated activity (also see the section on resting state
fMRI below). By contrast, visual areas in the monkey brain
have been defined using a large array of principled criteria
(6, 98, 293, 341), including responses of individual neurons;
laminar patterns of feedforward, lateral, and feedback connec-
tivity; colossal projections (i.e., interhemispheric connections
carried through the corpus callosum), and shared representa-
tions of vertical meridians.16 Conversely, even in cases where
the case for evolutionary homology seems most compelling,
such as monkey V1 versus human V1, we know they differ
substantially in their functional organization (165, 166, 205).

The import of the foregoing discussion for the neurophys-
iologist is of course not that one should avoid the implications
of evolutionary homology altogether, but that one must pro-
ceed with caution when making cross-species comparisons of
response properties of individual areas (167).

Neurons in the temporal lobe are highly selective to
object shape
Face processing in the macaque IT

Regions along the aforementioned “what?” pathway repre-
sent progressively more complex information about object
shape (Fig. 9C). One of the more intensely studied response
properties in the temporal lobe is the selectivity for faces. It
was first reported in the superior temporal polysensory area
(STP) by Gross and colleagues (40) (Fig. 15; see legend for

(A)

(B)

Figure 15 Selectivity for faces in the macaque superior temporal pol-
ysensory area (STP). (A) Anatomical location of area STP (yellow high-
light). (B) Responses of a single STP neuron to various visual objects,
including variations in face stimuli. Note that, among the stimuli tested,
the neuron responds best to a face with all the key facial features (left
column, second stimulus from top). Cutting this stimulus into 16 pieces
and showing the pieces in a shuffled order essentially eliminated the
response (right column, third stimulus form top). The icon at bottom
right denotes the size and visual field location of the receptive field.
C, contralateral visual field (i.e., contralateral to the recording loca-
tion). I, ipsilateral. Such neurons with large receptive fields that span
both the visual hemifields are common in the visually responsive areas
of the central and anterior temporal cortex. Adapted, with permission,
from (40).
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details). Face selectivity has since been demonstrated in the
human temporal lobe, especially the fusiform face area (FFA)
(14, 242).

As noted above, our perception of the visual scene is not
instantaneous (see, e.g., Figs. 2 and 3A). Instead, it evolves
over time, but rapidly enough that its temporal evolution is
not readily apparent. The neuronal dynamics that underlies
the perceptual dynamics has been studied in some detail over
the last decades or so.

The temporal dynamics of face-selectivity of macaque IT
neurons show an intriguing pattern: The response selectiv-
ity changes in a coarse-to-fine fashion in time, so that spikes
fired shortly after the stimulus onset tend to convey coarse
category information, that is, information relevant to distin-
guishing among broad categories of objects (see (140) for
details). An important study by Sugase and colleagues (323)
examined the time course of face representation by individual
IT cells in awake, fixating macaques (Fig. 16). The stimu-
lus set consisted of 38 stimuli, made up of three different
human faces with four different expressions each, four differ-
ent monkey faces with four different expressions each, and ten
different geometric shapes (see Fig. 16 (inset) for a represen-
tative subset of the stimuli). The three stimulus types (human

faces, monkey faces, and geometric stimuli) constituted the
global or coarse categories, and the four fine categories
consisted of the identity of the human faces, expression on
the human faces, identity of the monkey faces, and expression
on the monkey faces. The stimuli were presented for 350 ms
each, and the information transmission rate for the global
and fine categories was measured during each given 50 ms
sliding window between 50 and 500 ms after the stimulus
onset. The authors found that the responses during the ini-
tial transients carried significant information about the global
categories, but much less information about fine categories.
Fine-category information emerged much later, during the
sustained response after the initial transients. In other words,
the posttransient responses conveyed significant information
about both global and fine categories, whereas the initial tran-
sient conveyed significant information only about the global
categories.

Note that in the above study, the image itself was static,
and the animal, its head, and the eyes were stationary, for all
practical purposes. As alluded to above, real-world scenes are
far more dynamic, among other reasons because the objects
in the scene may move, conditions of lighting and shadows
may change, and viewer, viewer’s head and the viewer’s eyes
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Figure 16 Coarse-to-fine tuning of shape categories in the macaque IT. The stimulus set consisted
of 38 stimuli, a subset of which is shown in the inset. The global shape categories (inset, vertical
axis) consisted of human faces, monkey faces, and geometric shapes. The fine categories (inset, hor-
izontal axis) consisted of the various facial identities and expressions. The plots show the cumulative
information transmission rate of a sample of IT neurons about both the global and fine categories
(red and blue lines, respectively). The thick horizontal line along the x axis denotes the stimulus
duration. Adapted, with permission, from (140,323).
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all tend to move. This greatly increases the dynamicity of
the retinal image, and a variety of top-down factors help the
information processing even more dynamic (also see below).

Regions in the “dorsal pathway” represent spatial
information about the external world
As noted above, it is increasingly clear that, in view of our
current understanding of the brain as a dynamic network,
the notion of dorsal and ventral pathways is simplistic and
antiquated. But it is not uncommon to find references to these
pathways in textbooks and research articles. It is important
to bear in mind that these references are simply terms of
convenience.

Operating in our complex visual world entails not only
recognizing the various objects in the scene, but also the spa-
tial relationship among the objects in the scene and between
the viewer and the objects. Thus, understanding how the brain
computes the spatial parameters required for operating in the
real world is important to understanding high-level vision.

Regions in the parietal lobe play a crucial role in pro-
cessing the spatial information required for such behaviors
(for reviews, see (9, 10, 47, 168, 294, 325, 350); also see the
other relevant articles in this series). Various regions in the
parietal lobe specialize in the processing of various types of
spatial information, but no single region represents all the
information that is required to carry out all spatial tasks. In
other words, spatial information processing is fairly widely
distributed, just as form processing is. Another similarity to
form processing is the progressive, although not strictly hier-
archical, refinement of spatial information: Parietal regions at
higher levels of the visual anatomical hierarchy tend to carry
more refined spatial information. Moreover, representations
of form and space overlap considerably in many brain regions
(292). For instance, individual cells in area MT are selective
for motion, stereopsis and many other 3D spatial cues, as well
as for shape cues (74-76, 79, 102).

Output of the spatial processing in the parietal lobe
serve as inputs to three cortical systems involved in
different types of visually guided behaviors

In using visual information to inform behavior, the brain needs
to map the visual information to some type of real-world spa-
tial coordinates. It turns out that the brain maps this informa-
tion to not just one, but to three different types of real-world
coordinate systems, each of which is useful for a particular set
of visually guided behaviors (261, 310). The initial stages of
this sensorimotor processing occur in various regions of the
parietal lobe (9,10), and the resulting information is relayed to
three cortical systems of visually guided behavior: First, the
output to the premotor cortex contains information necessary
to navigating the extrapersonal space. This includes informa-
tion necessary for moving one or more body parts, including

moving the eyes, head, or the limbs from one position to the
next (see the reviews “Eye Movements” and “Sensory Sys-
tems in the Control of Movement” (264) in this series). The
second type of parietal output is relayed to the prefrontal cor-
tex, and carries information critical for executive functions,
including spatial working memory (see the review “Prefrontal
Cortex in Motor Control” in this series). Third, the pathway
to the medial temporal lobe (MTL) plays an important role
in spatial declarative memory and navigation in the extraper-
sonal space. We will examine the processing in MTL in some
detail below, because it provides a compelling illustration of
how vision ultimately subserves behavior.

How exactly is the spatial information combined with
visual information to produce the requisite real-world maps?
The answer remains spotty for each of the aforementioned
three systems of visually guided behavior, but it is clearest for
one of them: the conversion of the visuospatial information
to navigational information in various regions of the MTL.
We will examine this pathway further below, especially to
appreciate the simple, elegant neurocomputational logic of it.

Brain regions in the medial temporal lobe (MTL)
represent navigational space

To get around in the world, an organism needs information
about itself in relation to the external world. That is, it needs
an internal GPS map of its surrounding with a “You are here”
(YAH) sign on it. Of course, the YAH sign must be constantly
updated as the organism moves in its environment. How does
the brain go about doing this?

Moser and Moser found part of the answer to this in
rats, when they discovered grid cells in the entorhinal cortex
that represent the external world as a grid (134). Individual
grid cells fire preferentially when the animal is at specific
spatial locations along its navigational path, and these loca-
tions of preferential response are organized as a spatial grid
(Fig. 17A). it is as though each grid cell is a type of YAH
sign, and each location has its own YAH sign, and the YAH
sign corresponding to a given location “beeps” when you get
to that location. By looking up which cell is “beeping” at any
given time, the rat can figure out where it is in the navigational
space. If individual grids cells correspond to individual YAH
signs, where is the map?

It turns out that the YAH signs collectively help make up
the map: Grids of different grid cells are slightly staggered, or
phase-shifted from each other, so that grid cells as a population
help bracket the navigational space and sample it densely in
a combinatorial fashion (228-230).

Grid cells have been found in many other species, includ-
ing monkeys (Fig. 17B). In monkeys, the grid cells are evident
when the animal itself is stationary, as is its head, but it is freely
moving its eyes while examining a real-world picture (180),
indicating the grid cells can represent the extrapersonal space
in many different ways, not all of which involve self-motion
in physical space.
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Figure 17 Grid cells help represent the external visual space. Grid cells were originally reported in
rats, but have since been found in many species, including monkeys. (A) Responses of a single grid cell
in the entorhinal cortex of the rat. Left, black lines denote the trajectory of a rat freely moving in a box.
The cell fired spikes (red dots) when the rat was at specific locations within the box. These locations were
organized in a grid-like fashion that spanned the box. Right, the firing rates of the cell represented as
a heatmap, where “warmer” colors denote higher firing rates. Adapted, with permission, from (134).
(B) Responses of a single grid cell in the entorhinal cortex of the macaque monkey. Unlike the rat referred
to in panel A, the monkey was stationary. It sat in a primate chair with its head held steady, but freely
moved its eyes as it looked at real-world pictures (not shown). Left, red dots denote the locations in a
picture (not shown) that the monkey fixated, or gazed steadily at for a brief period. Center, firing rate
of the grid cell shown in heatmap format. The scale bars at bottom each denote 6◦ of visual angle.
Adapted, with permission, from (180).

O’Keefe and colleagues have shown a comparable phe-
nomenon elsewhere in the MTL of freely moving rats, in
the hippocampus (46, 230). Individual “place cells” respond
preferentially when the animal is in a particular spatial loca-
tion. Thus, place cells convey the YAH information explic-
itly, whereas grid cells only convey it implicitly. Models have
proposed that place cells represent the input from multiple
grid cells with differing grid periodicities but similar phase
(46, 230).

The above survey provided only the briefest of outlines
of how the feed-forward processing of sensory information
in the retinal image gives rise to “actionable” information
for visually guided behaviors. Later in this review, we will
develop a fuller view of how information flow in other
directions within the brain network, especially feedback and
lateral processing, augments visually guided behavior.

Select Urban Myths About Response
Selectivity in Visual Areas
From late 1970s to about 2010s, there was an explosion of
microelectrode neurophysiological studies that characterized
in detail how individual neurons and neuronal ensembles in
different extrastriate visual areas (i.e., all areas other than
the striate cortex, or V117) represent information about the
underlying visual image. For an overview of these response
properties, see (358).

Understandably enough, neurophysiological studies of
visual processing tend to highlight the novel or unexpected
aspects of the findings, which tend to be that neural responses
in a given region represent information that no other brain
region is known to represent, Naturally, the uniqueness of
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each area tends to get more noticeable than the similarities
among the regions in the scientific community at large, espe-
cially if the novel findings lend themselves to pithy slogans.
One unfortunate consequence of this has been the spawning
of several undying urban myths about functional hyperspe-
cialization in the visual system. The aforementioned tale of
two pathways is one such example. It has been clear since the
early 1990s that this model is flawed at best (for an overview
of the early anatomical evidence (221)). Mounting evidence
from the subsequent years indicates that, beyond pedagogi-
cal contexts, the notion of separate pathways is fundamen-
tally misleading, in that it represents an oversimplification of
the underlying complex network, the precise architecture of
which varies dynamically (358).

Many variations of the two-pathway idea have also gained
some currency. One such notion is that the dorsal and ven-
tral pathways are magnocellular and parvocellular pathways,
respectively, and that their input derives from the respective
cell types in the lateral geniculate nucleus. Tracing the source
of this myth is as appealing as tracing the source of the odor in
the elevator. Suffice it to say that this is a demonstrable myth
(48, 220, 308). A related notion, rooted in the magnocellular-
parvocelluar bifurcation but more directly relevant to high-
level vision, is that the dorsal pathway is geared toward fast
but coarse-grained processing of visual information, and ven-
tral pathway is more geared toward finer-grained, but slower
processing (21). This model is flawed at best, not the least
because it is based on discredited notions of magno-parvo
bifurcation (140). Another version of the two-pathway idea,
primarily based on neuropsychological studies of human brain
lesions, is that the ventral and dorsal pathways are specialized
for perception and action, respectively (120). For an appraisal
of this model, see (219).

The notion that “V4 is the color area” (272) is another
urban myth. Three main reasons why this is untrue bear stating
here, because they apply to functional specialization of any
visual area: First, while V4 cells do indeed convey information
about color, they also convey information about many other
visual features, including shape, disparity, motion, etc. (343).
Second, conversely, color is also represented in many other
areas of the extrastriate cortex and in the frontal lobe (232).
Third, it is now clear that color is represented in a distributed
fashion across many regions of the primate cortex, so that no
single visual area can claim to be a color area.

In fact, a large body of neurophysiological studies, as well
as many microstimulation and lesion studies have shown that
distributed representation or coding is a broadly applicable
principle of visual processing. No single visual feature is
exclusively or primarily represented in a single area, nor is
any visual area specialized exclusively for the processing of
any given visual feature. Thus, another myth, that MT is
exclusively the motion area, has been debunked (74-76,102).

This is not to say, however, that visual representation is
so distributed that no single area represents sufficient infor-
mation to support visual perception by itself. On the contrary,

many studies have shown that individual brain areas, neuronal
ensembles, or in some cases a relatively small number of
individual neurons, carry sufficient information to support, in
principle, the perceptual outcome (also see the section about
Multivoxel Pattern Analysis below). In this specific sense,
coding can be quite local (as opposed to distributed) in the
visual cortex, and a given visual parameter can be precisely
represented by multiple cells representing different values of
the parameter in a combinatorial fashion (185, 244). Indeed,
in macaque areas MT and MST (middle temporal area and
medial superior temporal area, respectively), responses of rel-
atively small number of neurons can, in principle, reliably rep-
resent the perceptual outcome on a trial-to-trial basis (60,153).

Top-Down Processes Significantly Affect
Visual Processing
Recent neurophysiological studies, especially whole-brain
neuroimaging studies that have examined connectivity pat-
terns across the entire brain, have made it abundantly clear
that the visual anatomical hierarchy by itself cannot be taken
as a blueprint for visual information processing. The four
main lines of evidence that have led to this revelation are
briefly summarized below.

Recurrent and lateral inputs can bring top-down
cognitive information to bear on visual processing

Recent studies have made it increasingly clear that visual
information also flows through the lateral and feedback con-
nections within and across areas. Such interactions, collec-
tively referred to as recurrent or reentrant processing in some
contexts, play a crucial role in visual information process-
ing (45, 148). For instance, it is known that prior knowl-
edge of the visual world is critical to visual perception. That
is, to recognize something, we must know what it is. Such
prior knowledge is acquired through perceptual learning dur-
ing development and adulthood, and are brought to bear on
visual perception through recurrent processing (e.g., Figs. 2
and 3A). It is now abundantly clear that recurrent process-
ing itself does not necessarily follow a hierarchical pattern
either (88, 147, 188, 340), although some earlier theories had
posited that perception followed a reverse hierarchical pattern
(3, 148).

It is also clear that information flow through lateral
connections affects visual information. For instance, the
responses of a given neuron to a stimulus within its clas-
sical receptive field, or CRF, primarily reflect the stimulus-
driven, or feed-forward component of the response. But the
stimuli outside the CRF, that is, in the nonclassical surround,
can greatly modulate the neuron’s response to the stimulus
within the CRF (see, e.g., Fig. 18; see legend for details). In
sum, all nonretinal factors that influence the processing of
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Figure 18 Coding of visual context. The classical receptive field (CRF) of a given neuron is the portion
of the visual field in which the neuron is most responsive to visual stimuli. The surrounding region in
which visual stimulation modulates the responses to CRF stimulation is referred to as the nonclassical
receptive field (nCRF) or nonclassical surround. This figure shows one of the earliest demonstrations of
the modulatory effect of nCRF on CRF, in this case the response of a single neuron in macaque MT.
Individual neurons in MT often response best when the stimulus moves in a particular direction, often
referred to as its preferred or optimal direction. The neuron shown responded best when the dots in the
CRF moved horizontally from left to right. CRF is denoted by the dashed rectangle in the icons at top.
(Left panel) Modulatory effect of stationary surround on motion stimuli in the CRF. The direction of the
movement of dots in the CRF was systematically varied, while the dots in the nCRF were held stationary.
(Right panel) Modulatory effect of surround motion on motion stimuli in the CRF. The responses of the
same neuron when the dots moved in its optimal direction, while the direction of the dots in the nCRF
was systematically varied. Note that the neuron’s responses vary systematically (i.e., the responses are
“tuned”21) with respect to both CRF motion, and motion in both the center and surround. Thus, neuron
can convey information of the motion “context,” or motion of a given moving object relative to nearby
stationary or moving objects. Adapted, with permission, from (5).

the retinal image information are brought to bear by recurrent
connections.

It is important to note that there do seem to be visual tasks
that require little or no recurrent processing. For instance,
some detection tasks can be successfully performed within
150 ms, a time frame that affords little time for reentrant pro-
cessing (see (348) and the references therein). However, such
tasks that require little or no recurrent processing appear to
be special-case scenarios or laboratory curiosities, since most
natural scenes tend to be complex enough to warrant recur-
rent processing. Indeed, there is no evidence that vision can
function without recurrent processing under natural viewing
conditions.

Extracortical regions play crucial roles in visual
information processing

The cortical anatomical hierarchy relies solely on the inter-
connections among the various cortical areas. But it is clear
that, in addition to these corticocortical pathways (Fig. 7),

information also flows from the cortex to subcortical stri-
atal regions, and back to the cortex, in a set of four mutu-
ally distinguishable but overlapping pathways referred to as
the corticostriatal loops, sometimes referred to as corticotha-
lamic or transthalamic pathways (Fig. 19; also see below
and the review “Functioning of Circuits Connecting Tha-
lamus and Cortex” in this series). Only one of these path-
ways, the so-called visual loop (Fig. 19A), is predominantly
visual, although visual information can influence the neural
responses in each of the other three loops. In case of all four
loops, information travels in the cortex → striatum → thala-
mus → cortex direction (Fig. 19B). The various brain regions
in the corticostriatal loops do not conform to a strict hierar-
chical pattern, much less the same hierarchical pattern as the
corticocortical connections (176, 301, 303).

While much remains to be discovered about informa-
tion processing in corticostriatal loops, it is already clear
that they play a vital role in brain function. The afore-
mentioned visual loop, for instance, is known to play key
roles in visual perception, visual-guidance of movements,
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Figure 19 Corticostriatal loops in human brain. (A) Four distinguishable but mutually overlapping loops are usually
recognized (colored labeled arrows), based primarily on the types of tasks in which they play prominent roles. Cortical
inputs arrive largely via the striatum and ultimately are directed back into the cortex via the thalamus. The (ultimate) cortical
output of the basal ganglia reaches largely to the same cortical areas that give rise to the initial inputs to the basal ganglia.
The visual loop is known to play a prominent role in the learning of visual object categories, but during object categorization
tasks using learned categories, the executive loop also plays a prominent role. Corticostriatal loops in the nonhuman primate
brain are largely similar (not shown). Adapted, with permission, from (287); also see (222,250). (B) A more detailed circuit
map of the visual loop shows the flow of information within the loop. GPe: Globus pallidus, external portion. GPi: Globus
pallidus, internal portion. SNr: Substantia nigra pars reticulata. SNc: Substantia nigra pars compacta. STN: Subthalamic
nucleus. VTA: Ventral tegmental area. Adapted, with permission, from (286).

perceptual learning, and multisensory processing (for reviews,
see (197, 287, 288, 299)).

It should be noted in this context that much of visual neuro-
physiological research so far has focused on the visual cortex.
The role of subcortical and cerebellar regions in the process-
ing of visual information is largely unclear and remains to be
explored (see Table 2). This is arguably because these regions
are smaller in size and less neurophysiologically accessible.
However, we know enough about the importance of these
regions to know that we cannot fully understand vision with-
out fully understanding the role of these regions in vision.

There is no prespecified flow-chart for visual
information; flow of visual information can and
does change dynamically

A naive functional interpretation of the anatomical hierar-
chy would be that the visual information flow follows an
obligatory, preset pathway. But recent studies of functional
connectivity have shown that the pathways of visual informa-
tion flow are task-dependent (57). Moreover, only a subset
of the available anatomical connections, that is, only a sub-
set of the functional connectivity patterns, are activated at any
given time. In no known instance are the patterns of functional
connectivity strictly hierarchical (see, e.g., (143, 314)).

Another dynamic aspect of brain function is that the func-
tional properties of visual neurons change over time. More-
over, the responses often change in an adaptive manner, so that

Table 2 Some Major Unanswered, Interrelated Questions in Neuro-
physiology of High-Level Vision

1. How does vision work under real-world conditions?
2. How do brain networks interact dynamically with each other

to produce behavior, and how does this influence the manner
visual information is processed?

3. How does vision change over time and through various
stages of life?

4. What roles do brain regions outside the cerebral cortex, such
as the various subcortical regions and the cerebellum, play in
vision?

5. What are the neuronal mechanisms of perceptual learning?
How do mechanisms of adult plasticity differ from
mechanisms of plasticity during development?

6. How does the brain integrate visual information with
information from other senses?

7. How does the activity of nonneuronal cells in the brain, such
as the glia affect the processing of visual information?

8. How do the various mental and metabolic states, such as
various states of sleep, wakefulness, arousal affect visual
information processing?

9. What are the neural bases of individual differences? What
are the neuronal bases of visual expertise, creativity, and
visually mediated affect (e.g., sensation of beauty, love,
humor, or horror)?

10. What are the neural mechanisms of brain impairment and
dysfunction?

11. Which aspects of biological vision can be reproduced, for
practical intents and purposes, in machines, and why?

12. Which visual deficits and which visual shortcomings in
healthy subjects can be compensated for using machines,
and how?
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they help enhance the information carried by the responses
about certain feature/s of the image. Such adaptive changes
can occur at different time frames, ranging from milliseconds
to years, or even decades (187). The hierarchical view of
visual processing cannot explain these dynamic properties of
the visual system.

Yet another dynamic dimension of visual perception is that
it is profoundly influenced by the cognitive context. You are
more likely to recognize the checkout person of your neigh-
borhood grocery store at the checkout counter than waiting for
a taxi at an overseas airport. That is, our expectation of what
we are likely to see influences what we do see (for reviews,
see (19, 20, 145, 146); also see (19, 20, 30, 146)).

Dynamic interplay of feed-forward and feedback
information shapes visual perception
Traditional methods of measuring perceptual outcomes do not
adequately characterize changes in high-level visual percepts.
This is in part because natural scenes tend to be very complex,
but also because our understanding of visual scenes, or at least
the introspective or reported aspect of it (see below), tends
to have a significant semantic or subjective component (see
(140) for details). In a study notable for its novel design and
somewhat unexpected results, Li and colleagues (97) have
shown how the reported percepts of natural scenes change
with varying viewing durations (also see (146, 265)).

Advances in neurophysiological and neuroimaging meth-
ods and in methods of data analysis now make it possible to
monitor the activity of multiple brain regions concurrently,
and determine how various regions interact with each other
(see (175, 254, 313, 314) for recent reviews). These stud-
ies collectively show that feedback information continuously
influences the processing of feed-forward information, and
vice versa. In fact, in most brain regions, with the possible
exception of the retina itself, neuronal responses at any given
moment have both feed-forward and feedback components,
so that it is generally not possible to classify the response
as purely feed-forward or purely feedback even under con-
trolled laboratory conditions, let alone under natural viewing
conditions. This intermingling of information becomes pro-
gressively more complex as one moves up the levels of the
visual anatomical hierarchy.

However, it is straightforward enough to experimentally
demonstrate the aforementioned principle of dynamic inter-
play of feedback versus feed-forward information. In a 2006
fMRI study (324), Summerfield and colleagues showed sub-
jects low-contrast, ambiguous pictures of faces, houses, and
cars in random order during each given block of the scan. Sub-
jects were required to categorize each given picture in one of
two ways depending on the block. During the “face block,”
subjects had to report whether a given picture was that of a
face or not. Similarly, during the “house block,” subjects had
to report whether a given picture was that of a house or not.
Car stimuli, which did not have a block of their own, served
as control stimuli.

As expected, responses in some regions were more
directly influenced by the stimuli (i.e., the feed-forward or
bottom-up information) than the task (i.e., feedback or top-
down information) and vice versa. Responses in the temporal
cortex, specifically in inferior occipital gyrus (IOG), fusiform
face area (FFA), temporoparietal junction (TP), and amyg-
dala were more stimulus-dependent than task-dependent.
Responses in two regions of the frontal cortex, the dorsal and
ventral medial frontal cortex (dMFC and vMFC, respectively)
showed the opposite pattern.

A straightforward hypothesis about how these brain
regions help carry out the task hand is that the frontal cortical
regions “instruct” the temporal regions what to expect during
a given block. To test this hypothesis, Summerfield and col-
leagues used a type of hypothesis-dependent technique of con-
nectivity analysis called dynamic causal modeling (DCM), a
technique that can be used to test specific hypotheses about
functional connectivity among brain regions. DCM results
showed that presentation of face stimuli selectively strength-
ened feed-forward connections from IOG to FFA and amyg-
dala. On the other hand, feedback connection from vMFC
to FFA and amygdala were selectively enhanced during face
blocks, that is, when subjects had to perform a face detec-
tion task. This is consistent with the above hypothesis that
top-down information from the frontal regions help modulate
the processing of the bottom-up information in the temporal
regions. Note that, without being able to analyze effective con-
nectivity patterns in this fashion, one would have deemed the
selfsame results eminently consistent with the conventional
hierarchical processing model, where the temporal regions do
their part in analyzing the image information on their own, and
send off the processed information higher up the hierarchy.

While the above study used DCM to analyze effective
connectivity, analytical methods quite distinct from DCM can
be also used in connectivity analyses. After all, DCM is not
suited for exploratory analyses. It can only be used for testing
specific hypotheses formulated independently. Fortunately,
many methods such as various types of autoregression or
cointegration methods are suitable for exploratory analyses as
well hypothesis testing. Granger causality (GC), for instance,
can be a powerful and principled alternative or complement to
DCM (13,103). When GC is used for testing causal relations
between, say, two time series A and B (e.g., responses of two
neurons or two brain regions, etc.), time series B is said to be
“Granger-caused” by A if successive values of B are better
predicted by taking into account both A and B, rather than
A alone. In other words, when time series A Granger-causes
time series B, the temporal patterns in A are approximately
repeated in B after some delay (Fig. 20).

These techniques can be applied to any type of neuro-
physiological data, including microelectrode recording, LFPs,
or neuroimaging data from EEG, MEG, or fMRI. As such,
familiarity with such techniques of determining effective con-
nectivity is essential to the contemporary neurophysiologist.
User-friendly toolkits from implementing such analyses are
easily available (24, 99).
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Figure 20 An illustration of Granger causality. This figure shows cause and effect relationship
between two hypothetical neural responses (top and bottom rows, respectively). The cause-
and-effect relationship exists throughout the responses, but is most readily apparent by visual
inspection of those portions of the responses where the response is prominently modulated
(arrows). Granger causality uses the entire length of both responses to quantitatively measure
the cause-and-effect relationship even when the relationship may be too subtle or complex to
be visually evident. In the present case, the response shown in the top row is said to “Granger-
cause” the response in the bottom row. Note that the term “Granger causation” denotes an
inferred cause-and-effect relationship, which may or not include direct causation. Thus, the
concept of Granger causality is in some respects narrower, and in some other respects broader,
than the concept of direct causation (13,29,224). But in either case, the cause must necessarily
precede the effect.

Attentional Selection and Eye
Movements Help Make Natural Scene
Perception Even More Dynamic
The brain continuously receives a vast amount of sensory
information from the external world, only a small fraction of
which tends to be relevant to the behavioral goal at hand
at a given moment. To optimally allocate its finite com-
putational resources to help process this information, the
brain needs a mechanism of selecting behaviorally relevant
aspects of the incoming information. Attention is one such
mechanism of perceptually selecting a particular stimuli or
tasks relevant to behavior. In an oft-used definition, William
James (160) formulated attention as “ . . . the taking posses-
sion by the mind, in clear and vivid form, of one out of
what seem several simultaneously possible objects or trains of
thought.”

Unsurprisingly, all sensory modalities have attentional
mechanisms. Attentional mechanisms can also operate across
two or more sensory modalities (84). The neural mechanisms
and behavioral manifestations of attention are discussed in
detail in the review “Attention: Behavior and neural mech-
anisms” elsewhere in this series (also see (96, 238)). In this
review, we will examine the ways in which visual attention
can dynamically change neural responses to visual stimuli
even when the underlying visual stimulus remains unchanged
(223).

Attention has four different types of modulatory
effects on neuronal responses
In neurophysiological experiments, attentional effects are
usually studied as the responses to a pair of stimuli, both,
either, or none of which is attended, depending on the condi-
tion. In general, effects of attention tend to be progressively
larger in higher visual areas. Neurophysiological studies in
awake, behaving monkeys have elucidated four distinct types
of effects of attention on the responses of individual neurons
(59, 217, 218). It is important to bear in mind that two or
more of these effects may be simultaneously operational at
any given time, especially under real-world conditions.

First, attention can enhance the individual neuron’s
response to a given stimulus in its CRF. That is, visual neu-
rons tend to respond better to a given stimulus presented in
its CRF when attention is directed to either a particular aspect
of the stimulus—such as a particular object or feature of that
object (object attention or feature attention, see below) or to
the spatial location of the CRF (spatial attention).

Second, attention can increase, in the signal theoretic
sense, the sensitivity and discriminability of the neuron’s
responses to different stimuli. Increased sensitivity means that
the neuron is more likely to respond to its preferred stimu-
lus than to its nonpreferred stimuli. Increased discriminability
results from a reduction in the variance of responses to one
or both of the stimuli, larger spread in the mean responses to
the stimuli, or both.
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Third, attention can suppress the response to the unat-
tended stimulus. That is, when two stimuli are presented
simultaneously within the cell’s CRF, the response of the
cell is usually different than when either stimulus is presented
alone within the CRF. But when both stimuli are presented
within the CRF and only one of them is attended, the cell tends
to respond as though only the attended stimulus is presented;
the response to the unattended stimulus is suppressed.

Fourth, by far the biggest effect of attention is that atten-
tion decreases the correlation among the responses of neu-
rons, so that the neurons become mutually less redundant.
Finally, whether or not attention alters the selectivity of the
neuron (e.g., change its preferred stimulus) is largely unclear.
Attention and eye movements are closely linked in many
animals, including humans and other primates. We typically
shift visual attention by moving our eyes to the portion of the
visual scene that we need to attend to, that is, select for closer
visual scrutiny. This is because in many animals including pri-
mates, not all parts of the retina are equally sensitive to visual
information. Instead, photoreceptors are densely packed in
a relatively small portion of the retina (subtending 0.5◦-1◦,
depending on the criteria used) near the back of the eye,
called the fovea. The visual image has the highest spatial
resolution at the fovea. Spatial resolution decreases, and spa-
tial blurring increases, rather steeply away from the fovea.
Therefore, animals with fovea generally deploy attention by
foveating the location of interest, that is, moving the eyes so
as to focus the image region of interest on the fovea. How-
ever, eye movements and attention can be mutually dissoci-
ated. For instance, one can shift attention without moving the
eyes. Moreover, many animals such as rodents lack fovea and
eye movements, but can nonetheless have sophisticated atten-
tional mechanisms (223). Eye movements are examined in
greater detail in the accompanying review “Eye Movements.”

Insights from resting state fMRI: Brain contains
many different networks dynamically recruited
according to behavioral task
Resting state fMRI (rsfMRI or R-fMRI) is a method of func-
tional brain imaging that can be used to evaluate interactions
among brain regions that occur when a subject is simply rest-
ing (i.e., not engaged in a behavioral task) (31, 43). While
there is no universally accepted definition of resting state,
rsfMRI are typically carried on alert subjects lying still with
their eyes closed. Even in this state, the activity of various
brain regions is correlated in time, so that the response levels
in these regions tend to rise and fall together.18 The level of
this correlation provides a metric of how strong the intrinsic
connections between a pair of brain regions are (see Figs. 21
and 22). Thus, rsfMRI can be thought of as a roadmap that
shows the network of roadways that connect various geo-
graphic locations.

Five insights into brain function provided by rsfMRI are
particularly noteworthy: First, it reveals that not all visual

regions are equally well-connected to others. Some “hub”
regions, including many regions in the striate and extrastriate
visual cortex, are much more heavily interconnected with
other brain regions than others (316, 339). Moreover, hub
regions tend to be well-connected to other hubs, forming a
“rich club” of brain regions (339). Such well-connectedness
among the well-connected is obviously unique to the brain.

Second, the networks revealed by rsfMRI tend to be sim-
ilar, but not identical to, the underlying anatomical networks.
Indeed, the anatomical connections help account for the pat-
tern of connectivity in rsfMRI because, after all, the under-
lying anatomical connections provide the “communication
infrastructure” that the various brain regions use for commu-
nicating with each other.

Third, brain networks identified by rsfMRI tend to over-
lap a great deal with those revealed by the fMRI during active
tasks (309) (also see Fig. 21). Resting state networks (RSNs)
often form the core of network activity during active tasks.
It is as though the intrinsic connectivity networks during rest
represent an operational repertoire, and the network connec-
tivity during various cognitive tasks represents elaborations
or variations of the themes in this repertoire.

A fourth, related, insight is that the RSNs are remarkably
similar across subjects, bolstering the notion that the RSNs
do represent “themes” of brain function (see, e.g., Fig. 21B).
The fact that these networks are similar across subjects raises
the intriguing possibility that the differences of network con-
nectivity between subjects may help explain individual dif-
ferences. The extent to which individual differences can be
accounted for in this fashion remains an intriguing area of
future research.

Finally, the RSNs are largely homologous among many
mammalian species, including humans, nonhuman primates,
and cats (316, 339). This is consistent with the fact that all
these brains share a well-established evolutionary homology
of various degrees. But more importantly, it points to how the
brain came to implement a particular processing pathway.

Relating Neuronal Activity to the
Behavioral Outcome, and Vice Versa
Microstimulation in MT and MST can influence
perceptual decisions
In a landmark set of studies, Newsome and colleagues com-
pellingly demonstrated that responses of individual neurons
can account for the perceptual outcome in a quantitative fash-
ion (37,236,278). Specifically, they studied how the neuronal
responses in monkey middle temporal area (MT) reflect per-
ceptual decisions in awake, behaving monkeys.

MT cells tend to respond strongly to motion stimuli, and
individual cells respond selectively to a given direction of
motion, referred to as the cell’s “preferred direction.” The
studies by Newsome and colleagues used dots moving either
in the preferred direction of the cell under study, or in the
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Figure 21 Resting state brain networks are very similar to brain networks active during tasks.
(A) Smith and colleagues (309) extracted 20 mutually independent patterns of activation in the
resting state networks (RSNs) from a database of 36 adult human subjects using the independent
components analysis (ICA) (319). Brain regions identified by each of these ICAs can be thought
of as an independent network. Smith and colleagues then compared RSN ICAs with ICAs of task-
activated networks from nearly 30,000 subjects from the BrainMap (BM) database (brainmap.org).
Comparisons for ten most informative ICAs are shown side by side in this panel. For each ICA,
activation is shown in a color-coded format for a coronal, sagittal, and horizontal section (top,
middle, bottom row, respectively). (B) Smith and colleagues (309) then analyzed the extent to
which the top ten of the RSN ICAs play a role in various types of behavioral tasks (or “behavioral
task domains” defined by the BrainMap database). Higher color values denote a correspondingly
larger role by the given network in a given task. Note that each given type of task recruits different
RSNs to different extents. Conversely, each RSN is active during multiple, different task paradigms,
with the degree of participation varying according to the task. Thus, the RSNs represent a repertoire
that the brain recruits and employs to various degrees depending on the task at hand. For details
and some important caveats, see (309). Adapted, with permission, from (309).

opposite (“null”) direction, depending on the trial. Depend-
ing on the trial, a certain proportion of the dots remained sta-
tionary (Fig. 23A). The stimuli were presented, one per trial,
within the CRF of the neuron under study while the animal
indicated, by pressing a lever, whether the dots moved in the
preferred or the null direction, and was rewarded with a drop

of juice. Since the neuronal responses also depend on the over-
all strength of motion information, or motion “energy,” in the
stimulus, the investigators “tuned” the strength of the motion
information by changing the proportion of dots that moved in
the same direction, that is, percentage correlation of motion.
The tuning of the motion strength in the stimuli elicited an
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Figure 22 Networks in human brain at rest. Nodes denote the cen-
ter of mass of the corresponding brain regions, and the edges (i.e.,
colored lines) represent intrinsic connections between a pair of regions
identifiable in the resting brain. Blue nodes represent the “rich club”
brain regions, which are well-connected brain regions that are well-
connected with other well-connected brain regions. Gray dots denote
nonrich club regions. Red lines denote connections between rich club
regions. Orange lines denote “feeder” connections that connect a rich
club region with a nonrich club region. Yellow lines denote “feeder”
connections that connect a nonrich club region with another nonrich
club region. Adapted, with permission, from (339). Note that this fig-
ure does not show subcortical or cerebellar networks, which decidedly
play crucial roles in brain function.

expected sigmoidal tuning in response from the neurons (solid
dots and solid fitted curve in Fig. 23B; see (37, 236) for ana-
lytical details). This “neurometric function” of the neuron’s
response closely paralleled the “psychometric function” of
the animal’s behavioral responses (open dots and dashed fit-
ted curve in Fig. 23B), suggesting that the visual sensory
information represented by this single neuron can, in princi-
ple, support the animal’s perceptual decision. The extent to
which the responses of a given neuron reflect the animal’s per-
ceptual decision—or perceptual choice between the available
alternatives—can be captured by a metric called the choice
probability (CP). CP is a numerical measure of the probability
of a certain perceptual or behavioral outcome (62, 68). Each
neuron can be assigned a CP. The higher the CP, the higher
the given neuron’s ability to reflect the animal’s perceptual
decisions.

The close parallels between the neurometric versus psy-
chometric functions held across different animal subjects, and
was not idiosyncratic to a particular subject tested (Fig. 23C).
Note, however, that the linear trend indicated by the dashed
line notwithstanding, there was considerable individual varia-
tion among the subjects (see (37) for details), as there often are
in neurophysiology. As outlined below, accounting for these
individual differences is likely to be a major future trend in
brain research.

Microstimulation demonstrated a causal
relationship between neuronal and perceptual
responses

When a brief electrical pulse was delivered near the neu-
ron under study, the animal’s performance actually improved
(Fig. 23D), in the sense that less motion energy was needed to
support the same level of behavioral performance (see (278)
for details). This panel shows the psychometric function of
an animal with or without microstimulation (solid dots and
fitted line and open and dashed fitted line, respectively) when
two different neurons were stimulated. Note that the paral-
lels between the psychometric versus neurometric functions
imply local coding, that is, that enough motion information is
conveyed by the responses of individual neurons to support
perceptual outcomes. The results of the microstimulation fur-
ther strengthen the evidence for local coding19 of motion
information in MT.

Multivoxel pattern analysis can accurately predict
perceptual outcome based on BOLD activity
MVPA is essentially the fMRI equivalent of the aforemen-
tioned CP analyses of single neuron data. Since the applica-
tion of MVPA to various forms of neurophysiological data,
especially microelectrode data, is likely to be a major data
analysis trend in the near term, we will consider them in some
detail here.

MVPA takes advantage of the fact that the spatial pattern
of BOLD activation can often, but not always, be diagnos-
tic of the perceptual outcome. Thus, it simply finds, using
advanced machine learning methods beyond the purview of
this review, a classifier that can reliably distinguish voxel
activation patterns that are associated with various perceptual
outcomes. The choice of the particular classifier can depend
on the particular implementation of MVPA (i.e., the particu-
lar toolkit used), the user, or the data. In this sense, MVPA is
a collection of classification tools, rather than a single clas-
sification technique. There is no a priori optimal classifier
that is suitable for all data but, in general, techniques that
transform the data into a dataspace that makes them easier to
classify (or the so-called kernel techniques) make for good
classifiers for neural data. Of the kernel techniques, support
vector machines (SVMs) are the most versatile and powerful
classifiers, and hence make for principled initial choice. In
some cases, the classifier has to be trained using the data at
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Figure 23 Neuronal responses in monkey middle temporal area (MT) reflect perceptual decisions in
awake, behaving monkeys. (A) Stimuli and task paradigm. The studies by Newsome and colleagues
(37,236) (278) used dots moving either in the preferred direction of the cell under study, or in the opposite
(“null”) direction, depending on the trial. The investigators “tuned” the strength of the motion information by
changing the proportion of dots that moved in the same direction (i.e., percentage correlation of motion).
(B) The “neurometric function” (solid dots and solid fitted curve) an individual neuron that closely paralleled
the “psychometric function” of the animal’s behavioral responses (open dots and dashed fitted curve). (C)
The close parallels between the neurometric versus psychometric functions held across different animal sub-
jects. The dashed line notwithstanding indicates the best fitting linear trend. (D) Demonstration of a causal
relationship between the responses of individual neurons and the animal’s percepts using microstimulation.
The psychometric function of an animal with or without microstimulation (solid dots and fitted line and open
and dashed fitted line, respectively). See text and (37,236) for details. Adapted, with permission, from (37).

hand before it performs reliably at predicting the perceptual
outcome. In these cases, the training data must be indepen-
dent of the testing data, or the performance of the classifier
will be subject to, among other things, the statistical cardinal
sin of sampling bias. Often, however, the classifier can per-
form reliably without prior training, which is the preferred
scenario.

A large number of studies have used MVPA to show that
responses in various individual brain regions or a set of regions
can reliably predict the perceptual outcome. Sometimes such

exercises are referred to as “mind reading,” in the sense that
one can read the brain responses to judge what the mind is
perceiving (see, e.g., (174, 234, 331, 362)).

Consciousness
There is no rigorous neuroscientific definition of conscious-
ness. Crick and Koch (66) famously, and plausibly, argued that
it is unwise to define it prematurely, before we better under-
stand what it is and how it works. However, they pointed out
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that we all have “a rough idea of what is meant by being con-
scious” (also see (67, 77)). It is easy enough to dismiss some
of the public interest in the topic of consciousness a pecu-
liar affliction of those with metaphysical proclivities. But this
topic is of interest in the narrow context of the present review,
because visual consciousness, or visual awareness, is often
thought of as a stand-in for visual perception (see, e.g., (64)).
But neuroscientific treatments of consciousness (65-67) often
ignore the fact that visual awareness, at least as it is (not)
defined, involves some introspection that is not commonplace
during visually guided real-world behavior. Mainly for this
reason, this review adopts the position that consciousness is a
side-effect of brain function, and not its raison d’etre.

Visual Perception Changes Dynamically
Across Time Scales Ranging from
Milliseconds to Decades
Short-term dynamics of the adult brain: Multiple
factors influence the temporal dynamics of neuronal
responses
To understand the temporal dynamics of the responses of
visual neurons, it is useful to bear in mind a few basic facts. To
begin with, there is an intrinsic dynamicity to the responses
that is not attributable to external factors (for a review, see
(140)). The responses of visual cortical neurons can and do
change quite rapidly over time, even as the stimulus itself
remains unchanged. Moreover, neurons in the visual cor-
tex typically fire spikes at low, “background” levels even in
the absence of overt visual stimulation. When a static visual
stimulus is presented in the neuron’s CRF, there is usually a
brief delay before the response rises above background lev-
els (282). This delay—or in more overtly neurophysiological
lingo, latency—is usually on the order of a few tens of mil-
liseconds in early visual cortical areas such as V1 or V2, and
tends to become progressively longer, lasting several tens of
milliseconds, in higher visual areas, such as those in the pari-
etal, temporal, and frontal lobes (144, 282). In the macaque,
where the latencies have been measured in detail, at least some
neurons in all visually responsive areas, including frontal and
motor cortices, will have been activated by about 190 ms fol-
lowing the stimulus onset (for reviews, see (133, 140, 245)).
The response latencies in the human brain are generally longer
by a few tens of milliseconds, depending on the brain region
(328). This is thought to be primarily because the human brain
is physically larger, so that the neuronal signals must travel
farther.

The feed-forward and feedback connections conduct
information at a velocity of about 2 to 3.5 m/s (see (11,
44, 115, 195) and the references therein). The lateral con-
nections, or connections between neurons within a given
area, including connections that subserve the aforementioned
center-surround interactions, conduct information about ten
times slower, at about 0.33 m/s (11). Across the visual cortex,

the synaptic delays are negligible for electrical synapses, but
tend to be about 5 to 20 ms per synapse for chemical synapses
(54, 353). Since a vast majority of cortical connections are
believed to use chemical synapses, synaptic delay is a major
factor that influences information processing and transfer in
the brain (54, 353).

Under controlled laboratory conditions, the responses of
visual neurons show, to a first approximation, the following
intrinsic temporal dynamic pattern in the absence of changes
in stimulation. When a static visual stimulus is presented
within the CRF of a typical visual neuron, its firing rate con-
tinues to be at background levels for a characteristic latency
period, following which it rises rapidly, peaking after a few
tens of milliseconds, depending on the neuron and the corti-
cal area (282). After this initial transient (or onset transient)
response, the firing rate decays, but typically more slowly
than during the rising phase, before largely stabilizing at a
lower response level over the next few hundred milliseconds,
depending on the stimulus, the individual neuron, and given
cortical area (140). It is thought that, under controlled lab-
oratory conditions where one can ensure that the response
from the previous trial decays to background levels before
the next trial is started, feed-forward inputs fully account for
the response transients, whereas recurrent processing plays a
major role in shaping the posttransient response (196). Obvi-
ously, this is unlikely to be true under natural viewing condi-
tions, where the visual system receives a continuous stream
of overlapping stimulations.

It is important to emphasize that subcortical visual neu-
rons differ considerably from cortical neurons in terms of the
temporal dynamics of the response. The most notable differ-
ence is that, in subcortical neurons, the response decays to a
much lesser degree after the initial transient.

Redundancy reduction and adaptive filtering in
early visual processing
Obviously, the fact that neuronal responses vary over time
even in the absence of any changes in the stimulus itself has
computational consequences because it means that informa-
tion conveyed by the neurons changes over time even when
the stimulus itself does not. But is this response change a nec-
essary evil that simply reflects that fact that neurons, being
biological entities, can keep up a given response only for so
long? Or does it also have an adaptive value which serves a
useful computational purpose? It is clear enough that these
two possibilities are not mutually exclusive, but is there a rea-
son to believe that the temporal variations in response serve a
computational end?

A study by Dan and colleagues (71) provided empirical
evidence that it might. They studied the responses of neu-
rons in the lateral geniculate nucleus (LGN) in anesthetized
cats. They stimulated the neurons with relatively long (20-
60 min) stretches of grayscale (or “black and white”) nat-
ural movies.20 The control stimuli were white noise (e.g.,
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Figure 24 A schematic illustration of correlation, decorrelation, and sparsening of the responses at the
population level during the initial rapid transient responses (panel A), or at later stages (panels B-E). Each
panel shows a highly idealized “population” consisting of four neurons (circles). Each quadrant of a given
circle denotes the response of the neuron to a given stimulus, color-coded according to the color scale at
bottom left. See text for details. Adapted, with permission, from (140).

TV “snow”) movies of similar length. An analysis of the
frequency composition of the various movies showed, as
expected, that there was substantial temporal correlation, or
redundancy, among the natural movies. The movies had more
information (or, technically, more power) at the lower tempo-
ral frequencies (or “red” frequencies), so that the power spec-
trum of the movies was, on average, “pink.” One would expect
that the information in the stimulus would be reflected in the
corresponding neuronal responses. However, the responses
of LGN neurons to the movies were much less “pink” than
expected. Instead the responses were largely “whitened,” so
that contributions from the lower temporal frequencies did
not dominate the neuronal responses as they did in case of the
stimuli.

More recent studies have shown that cells in the cat pri-
mary visual area (striate cortex or area 17, homologous to
monkey V1) dynamically adapt to visual stimuli, and over
even shorter time courses. Neurons in the striate cortex of the
anesthetized cat show stimulus-dependent adaptive changes
over the course of a few tens to several thousand milliseconds
(298). These temporal changes appear to make the cells ulti-
mately more sensitive to underrepresented spatial frequencies
so that, after the adaptive change, these cells act more like a
set of filters optimally suited to process the visual input.

Neuronal responses of individual neurons and
neuronal populations sparsen over time
In many visual areas, neuronal responses during the onset
transient tends to be similar, or in technical terms, correlated,
not only across cells, but across stimuli as well (Fig. 24A).
Following the transients, the responses tend to become

dissimilar from one neuron to the next, so that population
response becomes decorrelated. But how exactly do the neu-
ronal responses become dissimilar across the population? One
scenario is that the responses decrease differentially from one
cell to the next after the transient. Another, nonexclusive,
possibility is that the responses become dissimilar from one
stimulus to the next.

Figures 24B to E schematically illustrate four such sce-
narios. It turns out that all these scenarios are applicable to
some degree to a given neuronal population, depending on
the exact set of circumstances. In some instances, responses
decorrelate in a restricted subpopulation of cells (Fig. 24B,
bottom row), whereas the responses of the remaining cells
remain largely unchanged (Fig. 24B, top row). In other cases,
all cells decorrelate after the transient, but different subpop-
ulations of cells decorrelate similarly, so that the responses
remain correlated within the given subpopulation (Fig. 24C;
also see (198)).

There is no “one-size-fits-all” coding strategy
It is useful, from the point of view of a neurophysiologist, to
emphasize the following three interrelated observations about
efficient coding, in the event that they are not evident from the
first principles alone. First, the best efficient-coding strategy is
likely to vary depending on the precise nature of the underly-
ing computation. There is no single efficient-coding strategy
that is likely to be successful for every single information
processing task (241, 307). For instance, the optimal strategy
for efficiently coding an indoor scene, with its geometric reg-
ularities and unique statistical redundancies, is unlikely to be
the same as the optimal strategy for coding an outdoor scene.
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Figure 25 Visual cliff demonstrates development of depth perception. (A) The visual cliff is a laboratory apparatus
that helps test depth perception in human infants and animals. It consists of an actual cliff covered with a sturdy but
transparent plexiglass (112). The cliff is textured with a high-contrast checkerboard pattern, so that the cliff is clearly
visible through the plexiglass. An infant called by his mother from the opaque side of the apparatus readily crawls
to her (112). On the other hand, he is reluctant to venture over the perceived cliff (panel B). Even when the infants
know by patting the glass that it is solid, they still tend to be reluctant to cross. Infants’ decision as to whether or not to
cross the visual cliff are also influenced by whether the gestures of the parent are encouraging, neutral, or discouraging
(268). Such behaviors show sophisticated inferences based on a joint evaluation of various depth cues, risks, and
rewards. Studies show that healthy human infants have such depth perception even before they are able to crawl
(49). The visual cliff effect has been reported in many mammalian species (94). For a video of visual cliff effect, see
https://www.youtube.com/watch?v=p6cqNhHrMJA.

Needless to say, the optimal strategy will also depend on what
is being coded, and to what end.

Second, computational efficiency by itself may not deter-
mine how the brain performs information coding. There is
mounting evidence that metabolic efficiency may be a cru-
cial determinant in brain function. For instance, various types
of sparsening (52, 162, 241, 311) can be computationally
inefficient under certain circumstances, because most neu-
rons are “idle” in a sparsened network (Fig. 24; also see
(52, 162, 241, 311)). However, such idling is self-evidently
efficient from a metabolic viewpoint. Indeed, this may be
the reason why sparsening at every level of neuronal activity
seems to be so widespread in the brain (131).

Finally, the functional organization of the brain is, in the
ultimate analysis, shaped by a large number of evolutionary
factors. No single factor, efficiency of whatever ilk, is likely
to be determinative. The brain is not an organ designed to do
anything—it simply is a part of organisms that have evolved.
It is important to remember that, in the ruthless calculus of
life, no single evolutionary trait, including a great brain, will
a successful organism make.

Dynamics on a Slower Time Scale:
Visual Cognition Changes in Complex
Ways from Cradle to Grave
Changes in early development
Visual development in nonhuman primates is relatively well
understood, in part because invasive lesion and neurophys-
iological studies are possible in this case (for reviews, see

(7,182,235)). One of the most intriguing insights gained from
these studies is that, for the most part, receptive field proper-
ties of individual neurons in the infant brain are substantially
more mature than infant visual function. In most cases, the
properties of single neurons alone are not sufficient to account
for visual development. This discrepancy is attributable to
many factors, including weak signaling by infant neurons,
correlated firing among neurons, and comparatively delayed
development of neuronal mechanisms for pooling and reading
out the responses of populations of neurons (182, 183, 305).

Another important insight, gained from behavioral stud-
ies, is that, surprisingly sophisticated high-level visual facul-
ties are apparent at very early stages of development (see, e.g.,
Fig. 25; see legend for details). These faculties become rapidly
become even more sophisticated, in a process referred to as
“perceptual narrowing,” over the course of early development
(235). For instance, 6-month old human infants discriminate
individual faces of monkeys as well as they discriminate the
faces of individual humans. Discrimination performance of 9-
month old infants was comparable to that of the adults, in that
they discriminated individual human faces well, but monkey
faces much less well (248). The neural mechanisms of such
perceptual narrowing remain largely unclear.

Compared to our understanding of the adult visual sys-
tem, comparatively less is known about the functional orga-
nization of the visual system in very young human infants,
mainly because of the difficulties in assuring the safety and
comfort of infants inside the loud, dark, and scary high-field
magnetic environments of MR or MEG scanners. However,
this situation is slowly changing (for reviews, see (124,263)).
The few neuroimaging studies that exist suggest that the
functional organization of the visual system undergoes fairly
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Figure 26 fMRI in young human infants. (A) Renderings of what infants at various ages are likely to see when they
view a teddy bear. (B) Visual responses in the neonate. Visually responsive regions are located in the anterior aspect of
the calcarine sulcus in either hemisphere. Moreover, the visually evoked responses are lower compared to the periods
of rest. (C) Visual responses in a different 5-month old infant. Visual stimulation activates a much posterior aspect of
the calcarine sulcus. Also, the visually evoked responses are higher than the responses during rest. Panels B and C
are courtesy of Dr. Ernst Martin (215) and reproduced with permission.

large-scale changes during the first few weeks after birth
(Fig. 26).

Healthy and pathological aging are accompanied
by generic and specific deficits in high-level vision
As is well known, healthy aging in human and nonhuman pri-
mates results in the general diminishment of the senses and
visual cognitive faculties (91,117,150,177). Older adults also
show significant deficits in social cognition (226), although
social cognition is a complex process in which vision plays
only a part. It is also a matter of common experience that
healthy, age-related changes show considerable individual
variation, variously attributable to genetic differences, dif-
ferences in lifestyle, etc. While aging results in a general
decrease in performance in visual tasks (e.g., increases in reac-
tion times not accounted for by slowing of motor responses),
some aspects of vision diminish faster than others. By the
eighth decade of life, most people have significantly reduced

ability to discriminate colors and luminance. One prevalent
notion, termed the “sensory deficit hypothesis of aging,” posits
that such deficits in visual cognitive abilities are largely
attributable to the aging of the sensory organs per se. For
instance, when subjects are asked to match digits and sym-
bols written in low-contrast font, the performance of older
adults is comparable to those of much younger adults (114).

However, healthy aging is also known to be accompanied
by a number of changes in the functional organization of the
visual system. For instance, in a PET study by Grady and
colleagues, younger and older adults performed a location- or
face-matching task using the same set of stimuli (122, 123).
Both young and old subjects showed occipitotemporal rCBF
(regional cerebral blood flow) activation during face matching
and occipitoparietal activation during location matching when
these conditions were compared to the control task. However,
in both tasks, young subjects showed greater activation of the
prestriate cortex (Brodmann’s area 18), and old subjects had
larger rCBF increases in the occipitotemporal cortex (area
37). Areas in the prefrontal cortex, as well as in the inferior
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and medial parietal cortices, were more activated in the older
subjects during location matching. These findings suggest
that: (i) Younger adults make more efficient use of occipital
visual areas than older subjects. (ii) In older subjects, visual
processing, especially of spatial information, is much more
distributed across the visual cortex and less dependent on
the occipital cortex, presumably because of the reduced pro-
cessing efficiency of the occipital cortex. (iii) Spatial vision
may be affected to a greater degree by aging than is object
vision.

While Grady and colleagues did not specifically seek
to test the aforementioned sensory deficit hypothesis, their
results nonetheless illustrate the difficulty of testing (and, if
applicable, falsifying) it. It is possible that larger effects on
spatial vision in older adults may be due to differential aging
of the relevant parts of the brain, or differential sensitivity of
various parts of the brain due to age-related changes in the
eye or, to varying degrees depending on the visual task, both.

Changes in cognitive faculties in various age-related dis-
eases are better understood, but the underlying neurophysio-
logical causes still remain poorly understood, in part because
the underlying causes vary a great deal depending on the
disease and clinical treatment or management of the disease
(177).

Altogether, life cycle changes in the neurophysiology of
vision, especially during early development and aging, are a
trending area of research. The neural factors that contribute to
the differential development of vision-related faculties (e.g.,
reading), and the diminishment of visual cognitive faculties
in healthy aging, age-related diseases and various clinical
interventions (e.g., chemotherapy) remain poorly understood
and also constitute a major research trend.

Subcortical and Cerebellar Structures
Play Crucial, But Still Poorly Understood,
Roles in Visually Guided Behavior
Pulvinar and basal ganglia are important to visual
function
Subcortical structures such as the thalamus (of which the pul-
vinar is a part) and the basal ganglia have been unintended
victims of the persistent corticocentric bias in our understand-
ing of visual cognition and sidelining of the subcortical struc-
tures. In all fairness, it should be noted that modern connec-
tomic treatments of brain function have not rushed to correct
this oversight, either (for an overview, see (314); also see the
other relevant articles in this series, (300)). This neglect of
subcortical structures is in no small part due to the technical
difficulties of studying them: The individual nuclei tend to
be relatively small and deep in the brain, so that they are,
compared to areas in the cerebral cortex, substantially harder
to locate, access and study.

Basal ganglia do receive significant input from extras-
triate visual areas, and indirectly project back to the cor-
tex, indirectly through the pulvinar. This corticostriatal loop
plays a major role in goal-directed and reward-based behav-
iors, visual and otherwise (for overviews, see (38, 152, 181)).
There are multiple corticostriatal loops with overlapping cir-
cuitries (see Fig. 19). Studies in monkeys and humans have
shown that one of the corticostriatal loops, the visual loop, is
involved in the perceptual learning of visual object categories
(38, 152, 181). However, much remains to be learned about
the precise role of subcortical structures in high-level visual
processes.

Cerebellum plays key modulatory role in visually
guided behavior
Historically, the cerebellum has been thought of as a structure
related to motor functions, especially motor control, and its
role in cognitive process had been long ignored. The fact that
people born with a complete lack of a cerebellum, a condition
known as cerebellar agenesis, can live to ripe old age helped
further the notion that the cerebellum is not indispensable to
brain function.

However, it is now clearer than ever that the cerebellum
plays a major role in visual cognition, especially when adap-
tive processing, sensory-motor learning, and timing control
are involved (for reviews, see (320, 351); also see the other
relevant articles in this series). Strikingly, recent anatomical
studies have shown that, in humans, the majority of the human
cerebellum maps to the association cortex in the cerebrum (for
a review, see (42)). Even more remarkably, the lateralization
(i.e., interhemispheric asymmetry) evident in the cerebral sub-
strates of language and attention are mirrored in this mapping
(42, 321, 354).

In one of the earliest neuroimaging studies that demon-
strated the role of the cerebellum in high-level cognitive func-
tions, Petersen and colleagues measured brain function using
PET while human subjects viewed written words and engaged
in progressively more elaborate tasks based on the words
(255, 256). At the most basic task level, participants pas-
sively viewed the words (e.g., nouns like cake, dog, and tree).
At the next level, the subjects read the words aloud. At the
most demanding level, the subjects provided action verbs that
were semantically related to the written words (e.g., eat, walk,
and climb, respectively). When subjects generated words in
this fashion, right lateral cerebellum was preferentially acti-
vated (Fig. 27). Since these preferential responses were not
attributable to motor activity per se (255, 256), these results
indicate that the cerebellum was involved in intricate compu-
tations that involve vision, language, and action.

The precise neurophysiological mechanisms that underlie
the role of cerebellum in higher level cognitive functions are
almost entirely unclear. This aspect of cerebellar function
is likely to be a major “growth area” in neurophysiological
research in the future (Table 2).
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Figure 27 Preferential responses in the human cerebellum during high-level cognitive task. Panel A shows
the differential PET responses in a heatmap format, where brighter colors represent greater response. Panel
B schematically summarizes the regions (red squares) that showed the task-dependent preferential response.
Note that the responses are highly lateralized. Adapted, with permission, from (256).

Dysfunction of High-Level Vision Helps
Elucidate Mechanisms of High-Level
Vision
As noted in Figure 12 above, lesion studies represent a highly
useful, perturbative approach to understanding brain function
(27, 89, 212, 246). But when it comes to high-level vision,
lesions present a conundrum: On the one hand, targeted
lesions can be only made in animal systems, but it is hard
to measure nuanced high-level percepts in animals, includ-
ing monkeys. For this reason, although lesion studies in ani-
mals have shed much light on visual processing, they have
had limited success in elucidating high-level visual processes
(7,128,169,220,356). On the other hand, while one can mea-
sure nuanced, high-level percepts in human subjects, human
lesions, by definition, are uncontrolled, and vary greatly from
patient to the next. The fact that each patient is unique makes
it very hard to quantitatively relate data across patients. Such
methodological difficulties have hampered progress in this
field for decades.

However, situation is gradually improving, thanks in part
to the development of modern multivariate methods of quan-
titatively studying, individual subjects (see below). Moreover,
since understanding brain lesions is crucial to treating them,
studies of brain dysfunction in general, and of lesions in par-
ticular, continue to be of great clinical significance. For all
these reasons, neuropsychology is likely to be another promis-
ing “growth area” for research (Table 2). We will briefly sum-
marize one specific impairment, hemineglect, as an exem-
plar of current limitations and future directions of lesion
studies.

Hemineglect has a complex, multivariate
symptomology
Hemineglect, also referred to as hemispatial neglect, unilat-
eral neglect, or spatial neglect, is a neurological impairment in
which patients fail to be aware of one side of the visual world
or extrapersonal space (161, 172, 312) (Fig. 28). While, for
a variety of familiar reasons, hemineglect is most often clin-
ically evident as a visual deficit, other sensory faculties are

Figure 28 Hemineglect. This figure shows the results from a drawing
test (119,135) from a single patient with left hemineglect, resulting from
a localized lesion in the right temporal lobe. The patient was asked the
draw the dial of a clock. In most clinical cases, lesions tend to be less
circumscribed and more widespread than in the patient whose drawing
is shown here. Hence, drawings by most hemineglect patients tend to
be much more complex, and less clear-cut, than the “text book” case
shown in this figure (see (119, 135) for reviews). Figure courtesy of
Scholarpedia.
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often also impaired in hemineglect. In other words, the symp-
tomology of hemineglect tends to be complex in any given
patient, with deficits and impairments not fully captured by the
label “hemineglect” (170,204,347). For instance, hemineglect
patient may have varying degrees of lateralized weakness of
limb or eye muscles; varying degrees of deficits of spatial
reference frames, motor abilities, motor control, and memory
deficits. They may have varying degrees of visual field deficits
or no visual field deficits at all. It is also important to note
parenthetically that, for a variety of reasons, hemineglect is
nearly not as well-recorded in nonhuman animals, including
apes and monkeys.

Left hemineglect is much more common than right
hemineglect

Localized temporal lesions to a given side of the hemisphere
generally result in the hemineglect of the opposite hemifield.
Hemineglect is most prominent and long-lasting after damage
to the right hemisphere, as opposed to after damage to the left
hemisphere.

In other words, neglect of the left hemifield is much more
common than the neglect of the right hemifield, even though
damage to the two corresponding contralateral hemispheres is
about equally common. This is a clear enough manifestation
that the two hemispheres process the visual information in
markedly different fashions. The exact neurophysiological
reasons for this are not yet clear (for an overview of possible
mechanisms, see (172, 312)).

Hemineglect can result from lesioning of any of
many different brain regions

The conventional wisdom has been that neglect is associated
with lesions of the right posterior parietal cortex, especially
lesions of the inferior parietal lobe (IPL) or of temporoparietal
junction (TPJ) (338). Other studies have suggested other can-
didate locations, including subcortical ones (171, 227). But a
striking insight to emerge from a fairly large body of work is
that there is no single brain location which, if lesioned, will
lead to hemineglect.

How does one go about quantitatively relating multivariate
structural deficit data in hemineglect (and brain lesions in gen-
eral) to the resulting multivariate clinical symptoms? When
the question is posed this way, it is straightforwardly clear that
this a field where major advances in the future will come from
informatic, “big data” approaches that quantitatively relate
structural versus functional data. Quantitative databases of
are already available for hemineglect (171,227), and it should
be relatively straightforward to create similar databases of
structural deficits of other brain lesion syndromes. What is
currently lacking are detailed, multivariate quantifications of
the functional deficits.

Vision Acts in Concert with Other
Senses: A Brief Overview of
Cross-Modal Perception
For eminently understandable practical reasons, we tend to
study each of the senses in isolation. But behavioral stud-
ies have long made it clear that, especially under real-world
conditions, the brain concurrently uses information from all
senses, and often combines them so as to compensate for what
is missing in the information from one of the senses is com-
pensated for, or augmented, from the corresponding informa-
tion from another sense (fore reviews, see (317, 333)). Thus,
we recognize speech both from the sound and lip movements.
We test whether a fruit is ripe by jointly using the senses
of vision, touch and smell in a mutually interactive fashion.
When we eat, the external senses of touch, smell, and taste,
as well as the visceral senses of hunger and satiety, come into
play. In other words, multisensory processing is not a novelty
act for the brain, it is the brain’s native mode of operation.
Needless to say, combining information across senses is even
more important when one of the senses is impaired. A clas-
sic example is braille, wherein visually impaired people use
fingertips as “seeing eyes.”

The visual system has extensive, reciprocal anatomic and
functional connections with other sensory systems at multiple
levels of processing. The superior colliculus, a midbrain cen-
ter that plays a well-known role in eye movements, is famously
multimodal (318). In the cortex, many of the areas along
the superior temporal sulcus that are well-studied for their
role in high-level visual perception, including STP (superior
temporal polysensory area) that has long been known for its
selectivity for faces (Fig. 15), have long been known to be pol-
ysensory. Multimodal connectivity is evident at an early stage
during development, and the functional properties of multi-
modal neurons undergo narrowing and specialization during
development, with multimodal sensory experience being an
important factor in this specialization (318).

But recent anatomical, neurophysiological, and neuropsy-
chological studies have shown that cortical areas convention-
ally thought to be exclusively involved in visual processing,
such as areas V1 and V2, have extensive connections with the
auditory system, especially in the peripheral representation
of the visual field (Fig. 29). Multimodal functional interac-
tions have also been found in the human brain (Fig. 30; see
legend for details). That is, visual processing affects, and is
affected by, other sensorimotor modalities (for overviews, see
(194, 279, 317, 333)).

Collectively, these discoveries of multimodal interactions
have raised the possibility that much of the neocortex is
essentially multisensory (109). This notion would once have
seemed radical. But in light of the available and mounting evi-
dence, it is simply an acknowledgement of the fact that vision
does not act alone, and that the brain is set up to combine, and
jointly evaluate, the available information from all the senses.
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Figure 29 Our evolving understanding of multimodal anatomical connections with the visual system. (A) Traditional view of the cortical anatomy
of the primate brain recognized very few areas with multimodal anatomical connections (colored areas). (B) A more modern scheme of the
cortical anatomy of multisensory areas. Colored areas represent regions where anatomical and/or electrophysiological studies have demonstrated
multisensory interactions. Dashed gray outlines represent opened sulci. See (109) for details, including the criteria used for determining multimodal
connectivity at the anatomical level. Adapted, with permission, from (109).

It also helps further illustrate the fact that “vision for vision’s
sake” is a misleading, antiquated notion.

Synesthesia is an unusual consequence of sensory
“cross-talk”
Synesthesia is a cognitive phenomenon in which stimulation
of one sensory modality or pathway leads to a perceptual
experience in another sensory modality or pathway (25, 69).
It is relatively rare, with a reported incidence of about 4%
(70). It is fairly clear that at least some forms of synesthesia
have a genetic basis, although synesthesia can also be induced
pharmacologically (70).

Synesthesia is of interest in the study of high-level vision,
essentially for the same reason as binocular rivalry and other
types of perceptual instability are: They represent perceptual
phenomena in which the actual percept is dissociated from
the stimulus, that is, the same stimulus can produce more
than one percept. The fact that they are relatively easy to
induce reproducibly in the laboratory is also important. After
all, high-level phenomena such as dreams or sensations of
déjà vu are also intriguing high-level perceptual phenomena,
but they are all but impossible to induce reproducibly. People
who experience synesthesia, or synesthetes, show consider-
able individual differences (25, 69).

There are many forms of synesthesia. One comparatively
common form of synesthesia is grapheme-color synesthesia

or color-graphemic synesthesia, wherein letters or numbers
are perceived as inherently colored (Fig. 31A). Cross-modal
forms of synesthesia include instances where sounds are per-
ceived as colors (a phenomenon referred to as chromesthe-
sia), or where tasting food elicits a sensation of tactile shapes
(25, 69).

Neural mechanisms have not been well understood for any
form of synesthesia. In one of the most notable studies of the
neural mechanisms of synesthesia, Hubbard and colleagues
used fMRI to compare the neural responses of grapheme-
color synesthetes versus control subjects to graphemic and
nongraphic stimuli. They found that color graphemic stimuli
activate some brain regions similarly in both synesthetes and
controls subjects. But synesthetes show additional activation
of the color-selective portion of the retinotopic region V4
(hV4), whereas nonsynesthetes do not show hV4 activation
(Fig. 31B).

There is some neuroimaging evidence that suggests that
synesthesia may be caused by an increased cross-talk between
brain regions that specialize in the processing of information
from different sensory modalities (154, 155).

Individual Differences in High-Level
Perception
It has long been appreciated that individuals differ consider-
ably in every known facet of visual perception (see, e.g., (72)).
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Figure 30 Visual-haptic object processing activates lateral occipital complex (LOC) in the occipi-
totemporal pathway. Ahmedi and colleagues (8) compared BOLD responses to four conditions: visual
objects, somatosensory (or haptic) objects, visual textures, and haptic textures. Statistical map of the
contralateral hemisphere from a single subject are shown in panel A (3D folded view), panel B (inflated
view of the same hemisphere), and panel C (flattened view of the same hemisphere). Bottom, BOLD
responses to the four conditions are shown in the somatosensory cortex (bottom left) and LOC in the
occipitotemporal junction (bottom right). Col S, collateral sulcus; Cal S, calcarine sulcus; CS, central
sulcus; IPS, intraparietal sulcus; lateral S, lateral sulcus; STS, superior temporal sulcus. Adapted, with
permission, from (8).

Strictly speaking, it remains possible that our subjective expe-
riences (sometimes referred to as qualia) are different, even
when the underlying stimuli are the same (for discussions of
this intriguing topic, see (77, 87, 190)).

Vision research has traditionally ignored individual dif-
ferences, partly because of practical necessity. Most of the
available data analysis techniques use a so-called “frequen-
tist” approach, which estimate the underlying variables from a

sufficiently large sample of individuals. Individual variations
are necessarily “averaged out” using such an approach. This is
not to say that statistical analyses of individual differences are
impossible in frequentist statistics. For instance, predictions
can be made for an individual subject based on estimations
of the underlying variable based on a sample. Nonetheless,
a frequentist approach makes it inherently harder to analyze
individual variations. But many new approaches to analyzing
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(A) (B)

Figure 31 Color-graphemic synesthesia. (A) (left) A stimulus that can elicit synesthesia in color-graphemic synesthetes. (A) (right) A rendition of
what the synesthete likely to have perceived. Note that, since color-graphemic synesthetes tend to perceive different numbers as different colors,
the triangle made up of 2’s stands out, or “pops out,” perceptually for them. By contrast, nonsynesthetes perceive all the numbers to be of the same
color, so that for them, the triangle is not readily distinguishable from the background. (B) Neural responses during color-graphemic synesthesia as
measured by fMRI. BOLD responses to graphemic stimuli were contrasted against the responses to nongraphemic stimuli in synesthetes (left) and
control subjects and results are rendered on inflated, bottom-up views of brains of representative subjects. Both control subjects and synesthetes
showed common activation of the “grapheme region” (Gr). In addition to this common activation, graphemes activated the color selective areas
of the retinotopic region V4 (hV4) in synesthetes but not in nonsynesthetes. See (156) for details. Adapted, with permission, from (156).

and characterizing individual differences have been developed
(see, e.g., (55, 192)).

It should be noted that characterizing individual varia-
tions is more than just an analytical pastime. Nothing makes
us more unique as humans than our brains (or sometimes the
figurative lack thereof). Thus, understanding individual vari-
ations in brain activity is critical to explaining what makes
each of us unique. Understanding individual differences, and
helping other fields exploit and cater to individual differences
(e.g., in evidence-based medicine), is a major growth area of
neuroscientific research.

Major Challenges Lie Ahead in Porting
the Laboratory Studies of Vision to the
Real World
Laboratory studies differ from real-world situations
in many ways
Introspection and active reporting can have
confounding brain activations

On the one hand, under real-world conditions, vision contends
with daunting complexities and ambiguities that are hard to
capture under controlled conditions. On the other hand, typ-
ical laboratory visual tasks evidently require explicit, active
reporting that requires or elicits introspection, memorization,
etc. That is, these tasks require the subject to think intro-
spectively about what they saw and actively report what it is
that they saw. Obviously, this is not what happens under real-
world conditions. In the real-world, instead, visual perception
is a continuous stream, and we rarely dip into it to actively
introspect, or actively report, what we just saw.

But does such introspection or reporting make a differ-
ence? In an intriguing recent study, Frässle and colleagues
(100) monitored brain responses during binocular rivalry with

or without active reports by the subjects. They took advantage
of the fact that the subjects’ eye movements and pupil sizes
during rivalry were diagnostic of the subjects’ percepts, so that
these objective eye tracking measures could be reliably used
as markers for what the subjects did perceive when they were
not required to actively report their percepts. The investiga-
tors then simply compared the brain responses with or without
active reporting. They found that many occipital and parietal
areas responded similarly under both conditions, indicating
that the responses in these areas reflected the visual percept,
rather than the introspection or reporting of the percept. How-
ever, the activity in many areas of the frontal lobe was active
only under the active reporting conditions. Thus, these frontal
areas, previously reported to be involved in binocular rivalry
in studies using active reporting, appear to be involved in
introspection and active reporting. In a larger sense, these
results constitute a compelling “proof of principle” that brain
activity under laboratory task conditions is unlikely to be the
same as brain activity under real-world conditions.

A variety of rsfMRI studies have shown that the learn-
ing of new tasks, including task-related motor responses to
new stimuli, is known produce major changes in the intrin-
sic connectivity among brain regions including, but not lim-
ited to, retinotopic visual areas that have been previously
known to be activated during various experimental visual
tasks (125, 132, 203, 209). This suggests that laboratory stud-
ies produce brain activity related to the study paradigm per se
that may not occur under real-world conditions.

Rewards (and in some cases, punishments) under labo-
ratory conditions are unlike those in the real world in two
main respects. First, visual perception is rarely associated
with rewards as periodic, immediate, or explicit in the real
world as they typically are under laboratory conditions. Sec-
ond, rewards are intricately associated with reporting under
laboratory conditions, but the two do not regularly cooc-
cur in the real world. In the real world, rewards, when they
come, typically do so even when the percept is not reported.
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Altogether, rewarding regimes typically used in laboratory
studies create conditions that are quite different from those in
the real world.

Is the connectomic view just another fad?
The connectomic view essentially asserts that, to fully under-
stand how the brain works, understanding the responses of
individual regions is not enough. We also need to understand
how the various parts work as a whole, that is, how the various
regions talk to each other when the brain “does” something
(e.g., when it produces a given behavior). Thus, it simply
seeks a broader understanding that subsumes all our previous
understanding—a larger, holistic explanation that accounts
for narrower ones. An argument for considering the whole
instead of just parts is unlikely to turn out to be just a fad.
Besides, as noted throughout this review and within many of
the references cited, there is compelling empirical evidence
that brain function is mediated by dynamic networks. How-
ever, it is not only possible, but also likely, that our view of
brain networks are likely to evolve and refine as we learn
about how they work. Throughout this review, I have noted
various areas of “low-hanging fruit” for future research, where
research is likely to make a significant impact.

Conclusion: Connectome Cometh!
Over the last few decades we have learned a lot of about
how various parts of the visual system work. What is less
clear is how various parts of the visual system function as
a whole, especially under real-world conditions. As noted
above, we know enough to know that the older view that
visual processing proceeds in a feed-forward, hierarchical
manner is quite wrong (57, 315), but we do not yet have a
new framework of understanding to replace it. However, as
to the question of how vision works, while we do not yet
know the answer itself, we do know the nature of the answer,
and it is fundamentally connectomic: Vision is a process in
which visual sensory information from the eyes is mapped
to various effector organs of behavior by dynamic networks
of the brain. Visual perception and visual awareness are the
results of the readout of this process. While much remains
to be discovered to elucidate exactly how this happens, it is
clear that the connectomic sea change in our understanding
of brain function in general, and of vision in particular, is
already underway, and has been underway for some time now
(28, 116, 211, 296, 346). The truly exciting prospect is that
we will have the outlines of an answer fairly soon, probably
within the lifetimes of most of us.
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Endnotes
1. In majority of cases, the macaque monkey (Macaca spp.), espe-

cially Macaca mulatta, or the Rhesus macaque.
2. Crowding and clutter refer to essentially the same aspect of

the image. To a first approximation, the former is a term of art
common in the psychophysical literature, and the latter is used
in neurophysiology and machine vision.

3. For a more detailed and engaging recounting of this history by
three great scientists who helped make it, see Gross CG. Brain,
Vision, Memory. Tales in the History of Neuroscience. Cam-
bridge: MIT Press, 1998; and Hubel DH and Wiesel TN, Brain
and Visual Perception: The Story of a 25-Year Collaboration.
New York: Oxford University Press, 2005.

4. There are two main systems of defining and naming macaque
visual areas. One is the widely adopted system delineated by
Van Essen and his colleagues (see, e.g., Felleman DJ and Van
Essen DC. Distributed hierarchical processing in the primate
cerebral cortex. Cereb Cortex 1: 1-47, 1991, and the references
therein). The other is the system delineated by Mishkin, Gross,
and their colleagues (see, e.g., Gross CG, Bruce CJ, Desimone R,
Fleming R, and Gattass R. Cortical visual areas of the temporal
lobe: Three areas in the macaque. In: Cortical Sensory Organi-
zation, edited by Woolsey CN. New York: Humana Press, 1981,
pp. 187-216; Kravitz DJ, Saleem KS, Baker CI, Ungerleider LG,
and Mishkin M. The ventral visual pathway: An expanded neural
framework for the processing of object quality. Trends Cogn Sci
17: 26-49, 2013; and the references therein). The two systems of
cortical parcellation/nomenclature overlap considerably, espe-
cially at the early and intermediate levels of the visual hierarchy
where the defining criteria of the various areas are objectively
clearer. The present review mostly adopts the nomenclature of
Van Essen et al., except in case of Figure 9, which follows the
Mishkin et al. nomenclature. Which nomenclature system to
choose is mostly a matter of personal preference; neurophysi-
ologists tend to adopt the system of nomenclature using which
they were originally trained.

5. During a typical microelectrode recording session involving a
visual task, the animal sits comfortably in a chair with its head
fixed and performs, for a reward, a behavioral task in which
it is trained. The animal’s eye positions are monitored and are
often controlled (e.g., brief fixations are required), the responses
of isolated neurons or groups of neurons are measured using
one or more microelectrodes inserted through the dura. A great
majority of previous studies recorded the activity of one neuron
at a time. While it is now technically possible to concurrently
record from a large number of neurons from a given area, or
even from multiple different areas across the brain, it is still not
possible to carry out whole-brain neurophysiological recordings.
Therefore, how the responses of individual neurons add up to
the activity of brain networks is largely unclear.
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6. This process of putting together the individual features that are
processed apart into a unified, holistic percept is often referred
to as “binding” (for reviews, see Hardcastle VG. Consciousness
and the neurobiology of perceptual binding. Semin Neurol 17:
163-170, 1997, 234; Robertson LC. Binding, spatial attention
and perceptual awareness. Nat Rev Neurosci 4: 93-102, 2003,
253; Shadlen MN and Movshon JA. Synchrony unbound: A
critical evaluation of the temporal binding hypothesis. Neuron
24: 67-77, 111-125, 1999). Whether binding is a real process
is a matter of debate. It has been proposed that synchronization
of neuronal firing is a mechanism for, and is diagnostic of,
binding. It should be noted that, while the synchronization of
neuronal firing is an empirically demonstrated fact, this by itself
does not prove that binding is a real process, any more than
the undisputed existence of Loch Ness proves the existence
of Loch Ness Monster. The main reason for suspecting that
binding is not real process is that, as outlined elsewhere in this
review, it increasingly clear that the visual system does not really
process individual visual features apart from each other in the
first place, thus obviating the need to putting them back together.
Thus, at best, it remains to be seen whether or not binding is
epiphenomenal as a brain process (see September 1999 issue
of Neuron). Alternatively, binding may turn out to be just a
digestive phenomenon not discussed in polite company.

7. It is worth noting parenthetically in this context that one of the
persistent myths about these pathways is that dorsal pathway is
primarily a magnocellular pathway and the ventral pathway is
primarily a parvocellular pathway. This is simply untrue. See,
e.g., Callaway EM. Neural substrates within primary visual cor-
tex for interactions between parallel visual pathways. Prog Brain
Res 149: 59-64, 2005; and Sincich LC and Horton JC. The cir-
cuitry of V1 and V2: Integration of color, form, and motion.
Annu Rev Neurosci 28: 303-326, 2005.) for additional info.

8. In the context of visual perception, the Bayes’ law of conditional
probability can be expressed as p(S|I) = [p(S) × p (I|S)]/p(I),
where I is the retinal image of the given visual scene S in the real
world, and p(I) ≠ 0. This reformulation of Bayes law represents
the best possible way for a computational system to combine the
information about S and I to infer which real-world scene S is
“out there” in front of the eyes given the image I that the scene
forms on the retina. The quantity p(I) is simply a normalizing
constant, which means that it can be safely left out the equation,
which then reduces the equation to p(S|I) = p(S) × p (I|S). The
quantities p(S|I), p(S), and p (I|S) are referred to as the posterior
distribution, prior distribution (or “prior”), and likelihood dis-
tribution (or likelihood function), respectively. The prior essen-
tially represents the a priori belief about the chances of encoun-
tering various scenes. Note that when the prior probability of
encountering all scenes is the same, or when there is no reason
to believe that they are not the same, the prior becomes uniform
or “flat,” and conveys no information. In this case, the above
equation further reduces p(S|I) = p (I|S), but the Bayes’ law still
holds. This illustrates that priors, while useful, are dispensable
in the Bayesian framework. One of the common misconceptions
about the Bayes framework is that it fundamentally consists of
updating one’s prior belief based on new sensory evidence I. The
above thought exercise demonstrates that this is not strictly true,
and illustrates why, that is, when the prior is flat, there is no prior
belief to update, and the likelihood function solely determines
the posterior distribution. On the other hand, if the likelihood
function is flat and the prior is not, the posterior distribution is

given solely by the prior distribution. Thus, no single quantity on
the right hand of the equation is indispensable, nor is the com-
putation necessarily limited to using information about only S
and/or I. Bayesian framework may reduce or expand depending
on the given case to include all probabilistic variables that are
relevant to inferring S given I. As noted in the next, the brain’s
inferences are often influenced by the possible risks and benefits
of a given behavior. The Bayes framework provides a way of
expanding (or contracting) the above Bayes’ equation to accom-
modate such additional factors (or lack thereof). This flexibility
of the Bayes’ equation is a big reason why it is so useful in real-
world computations. For details, see Knill D and Richards W
(Eds.), Perception as Bayesian Inference. New York: Cambridge
University Press, 1996; and Kersten D, Mamassian P, and Yuille
A. Object perception as Bayesian inference. Annu Rev Psychol
55: 271-304, 2004.

9. It is important to distinguish the concept of “prior knowledge
of the visual world” from the aforementioned concept of pri-
ors. The brain “knows” more about the visual world than just
the a priori chances of encountering a particular scene. The
brain has a vast amount of information about the visual world
(including information about what the various visual objects
and scenes “look like”) that it acquires during development and
through perceptual learning. This prior knowledge is ultimately
incorporated in the Bayes’ framework in the form of the like-
lihood function, and the prior belief is incorporated though the
prior distribution. So “prior knowledge” and “priors” have very
distinct meanings, to appreciate which is an important aspect of
Bayes literacy. For details, see Knill D and Richards W (Eds.),
Perception as Bayesian Inference. New York: Cambridge Uni-
versity Press, 1996; and Kersten D, Mamassian P, and Yuille A.
Object perception as Bayesian inference. Annu Rev Psychol 55:
271-304, 2004.

10. For an exemplar graphical representation of a brain network in
action, see https://sms.cam.ac.uk/media/1587539.

11. “Transient” or “response transient” refers to the burst of spikes
fired by the neuron at the start of its stimulus-evoked response.
That is, the response transient refers to that portion of the
response in which the firing rate rapidly rises and peaks.

12. Strictly speaking, there are some very narrow, special cases of
evolution, such as drift and extinction, where this principle of
natural selection does not necessarily hold, and the adaptive
value of the four F’s does not matter. Thus, natural selection,
drift, and extinction constitute the neo-Darwinian evolutionary
framework that accounts for the evolution of all neural systems.

13. Studies of the human brain tend to refer to parcellations of the
brain as “regions,” as opposed to “areas.” This both because
“area” is a rigorous term that refers to a specific portion of
the cerebral cortex defined using a set of objective criteria
that include architectonics, connectivity, and neurophysiology.
These criteria typically require invasive studies, and have been
carried out in animal systems, including monkeys. In case of
human brain, where invasive studies highly difficult, if not
impossible, brain regions are parcellated solely using functional
criteria, that is, on the basis of their neural responses. The loca-
tions and boundaries of these parcellations can vary substan-
tially, depending on the exact functional test used for defining
them. Therefore, it would be inappropriate to refer to these
parcellations as areas. Besides, the term “region” has the inci-
dental advantage that it can be used for referring to noncortical
parcellations of the brain, e.g., subthalamic nucleus or globus
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pallidus. The term “area” is not suitable for referring to these
or any other noncortical structures, in humans or animals; it is
typically reserved for cortical structures defined using the afore-
mentioned criteria.

14. Indeed, such stimuli that induce bistable or multistable percepts
in the complete absence of physical changes in the stimulus
are a highly useful experimental tool for dissociating stimulus-
driven factors from other factors that affect perception. See Kim
CY and Blake R. Psychophysical magic: Rendering the visible
“invisible.” Trends Cogn Sci 9: 381-388, 2005.

15. Indeed, while panda’s thumb may appear to be very similar to
the human thumb, it is actually an extension of a completely
different bone, as explained by Stephen Jay Gould in his elegant
book Panda’s Thumb (New York, W.W. Norton and Co. 1980).

16. Vertical meridians are generally given greater weight than hori-
zontal meridians in determining the boundaries between visual
areas, because vertical meridian representations are related to
connectivity between the two hemispheres (and therefore the
two visual hemifields), mainly through the corpus callosum.

17. In the cat, the striate cortex is referred to as Area 17, because
it is equivalent to Area 17 in the human brain described by
Brodmann (see Finger S. Origins of Neuroscience: A History of
Explorations into Brain Function. New York: Oxford University
Press, 1994).

18. For a video demonstration of this phenomenon, see http://
journals.plos.org/plosone/article/asset?unique&id=info:doi/
10.1371/journal.pone.0158504.s002

19. Note that the term “local” here does not mean that the rele-
vant information is spatially localized. Instead, it means that
the information is limited to a small, local region of the coding
space. Thus, when all or most of the information necessary to
support a given percept is represented by just one neuron or
a small set of neurons, we say that the information is locally
coded. The proverbial “grandmother neuron” or the neuron that
responds only when your grandmother comes into view, is a
prototypical example of local coding, because this neuron by
itself can signal when your grandmother comes into view. But
when individual neurons code only part of the information, so
that no individual neuron carries all of the relevant information,
but a large number of neurons collectively do, the information
is said to be distributed across such neurons.

20. One of the movies they showed happened to be Casablanca.
21. Tuning is somewhat of a touchstone for visual feature selec-

tivity in neurophysiological investigations, because it denotes a
systematic dose-response relationship, that is, a systematic rela-
tionship with a given stimulus variable and a neuronal response.
For an overview of this principle, see Parker AJ and Newsome
WT. Sense and the single neuron: Probing the physiology of
perception. Annu Rev Neurosci 21: 227-277, 1998.
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