
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The future is here: How machine learning will impact 
neurology 
 

ABSTRACT 
Machine learning (ML) is a rapidly developing 
branch of computer science that allows computers 
to learn complex tasks and behaviors. This enables 
computers to perform many real-world tasks that 
have hitherto resisted automation. ML is no longer 
a matter of futuristic fiction or mere laboratory 
curiosity. Recent advances have made it possible 
to tackle significant real-world problems, and ML 
is already making a significant impact in almost 
every aspect of modern life: from smart phones to 
high finance, from fuel injection systems in cars 
to cars that drive themselves, from computers that 
speak to robots that help build other robots, and 
from law enforcement to warfare. In today’s world, 
any smart machine uses some form of ML. Thus, 
every walk of human life that was once the exclusive 
domain of extensively trained, highly skilled human 
professionals is either already being impacted or 
stands to be impacted by ML. Not surprisingly, 
ML already has a substantial presence in medicine. 
In addition to being used for more mundane tasks 
such as bookkeeping and dispensation, it is also 
being used to digest vast amounts of cancer 
research data, to help customize cancer therapies 
for individual patients, analyze radiological images 
and other clinical data, and to supervise medical 
education and training. Applications of ML in 
neurology are likely to fall under two broad 
categories: (i) assisting neurological patients with 
 

their daily lives (e.g. helping compensate for sensory 
or motor deficits), or (ii) assisting neurologists in 
various tasks (e.g. analyzing of neuroimaging data 
to help make evidence-based decisions customized 
for each individual patient). Given the unnervingly 
immense potential of ML, its impact on medicine 
in general and neurology in particular is likely to 
increase in the future. 
 
KEYWORDS: artificial intelligence (AI), big data, 
deep learning, machine learning, neural networks, 
robotics. 
 
1. Introduction 
Since the advent of modern digital computers in 
the 1940s, computing technology has continuously 
gained ascendancy in industrialized countries around 
the world. Today, it is all but impossible to think 
of a facet of modern society completely free of the 
influence of computers. In addition to the more 
conventional computers we use at work and at 
home, computers of one ilk or another help operate 
our cars, phones, banks, and grocery stores. 
Supercomputers, often huge enough to fill whole 
floors of large buildings, and dedicated data centers 
that sometimes use as much power as moderately-
sized towns, process enormous amounts of data 
for nation-states, corporations, and other institutions. 
The list is endless. 
Until very recently, however, computers had very 
obvious strengths and limitations. They were notably 
good at number crunching, and at rule-based, 
regimented tasks. Yet they were flummoxed by 
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the real world and could not handle its complex, 
chancy, messy nature. Thus, computers could 
gamely handle the fuel injection in your car, but 
they could not drive the car. Corporations could 
trust them to handle the tedious tasks of ordering 
and balancing the books, but they were poor at 
predicting which products were likely to fare better 
in the market. Some of the more recent, much 
ballyhooed supercomputers were good at finding 
a needle in some haystacks, but not others. For 
example, computers could screen millions of 
fingerprints for matches, but were hopeless in 
finding patterns of phone calls or identifying specific 
statements within phone calls to help identify 
potential terrorists. This seemed to be the sole 
domain of humans. Thus, until recently, computers 
and humans seemed to nicely complement each 
other’s strengths and weaknesses. Even when a 
computer, IBM’s Watson, beat the reigning world 
chess champion, it did not seem like such a big 
leap due to chess being a rule-based game in which 
all possible moves by either player can, in principle, 
be calculated in advance. Thus, it seemed like just 
another number-crunching exercise, but on steroids. 
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The situation has changed rather dramatically in 
the last decade or so. Instead of being applied to 
technically rarefied examples, ML has finally matured 
enough to tackle some significant real-world 
problems. Self-driving cars have become fairly 
common on public roads in many metropolitan 
areas. Virtual assistants, such as Siri, Alexa, and 
Cortana etc., have begun to be used by real people 
to assist with real-world tasks. In February 2011, a 
newer incarnation of Watson appeared on the 
popular American television game show Jeopardy! 
and soundly beat two human champions, Ken 
Jennings and Brad Rutter (Fig. 1). Clearly, this 
was no mere number crunching exercise. Being a 
Jeopardy! contestant is a uniquely human endeavor. 
Specifically, the entire match is conducted in 
conversational English, so the computer had to 
muster a uniquely human facility: natural language 
understanding [1]. It had to come up with questions 
for answers such as, “Wanted for general evil-ness; 
last seen at the tower of Barad-dur; it’s a giant eye, 
folks. Kinda hard to miss” in the category ‘Literary 
Character AFB’, and “This 2-word phrase means 
the power to take private property for public use; 
 

Fig. 1. IBM’s question-answering computer Watson, with fellow contestants Ken Jennings and Brad Rutter on the 
television game show Jeopardy!. A graphical avatar of Watson was shown at the podium, and the actual computer. While 
successes in chess games and on game shows have garnered Watson much publicity, the impact of machine learning 
on other fields such as medicine, and by companies and institutions other than IBM, has received far less publicity. 
“Jeopardy!” courtesy Sony Pictures Television. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Machine learning and neurology 

amounts of training data necessary for ML algorithms, 
is now available to improve ML applications. 
In this review, we will briefly review the state-of-
the-art of ML, and how it is already starting to 
make an impact, and is likely to make a more 
substantial future impact, on medicine in general 
and neurology in particular. Instead of attempting 
an exhaustive review of all ML applications in 
neurology, we will highlight a few developments and 
trends that are crucial to understanding this trend. 
 
2. What is machine learning?  
Traditionally, computers have dealt with situations 
where both the task and the exact procedure for 
performing the task are precisely specified. A 
familiar example is the addition of numbers. For 
any two numbers, the correct result of adding 
them up is precisely mathematically defined. In 
addition, a formal procedure (algorithm) used for 
performing addition is well-known (recall the 
elementary school algorithm for addition with carry). 
Each step of this algorithm is also precisely defined 
and self-contained (i.e., requires no additional 
knowledge). It is possible to prove that executing 
the algorithm will in fact always produce the 
correct answer. Together, these properties make it 
easy and efficient to explicitly program the 
computer to perform the task in question. 
In contrast, many tasks humans face involve 
significantly more ambiguity and vagueness. 
Consider, for example, the task of driving a car. 
The first source of ambiguity stems from the absence 
of a precise definition of what constitutes “good 
driving”. Indeed, it is possible for two reasonable 
people to disagree on an evaluation of someone’s 
driving or on “best practices” recommendations. 
The second source of ambiguity stems from the 
fact that even when there is an agreement on what 
defines “good driving”, there is no formal procedure 
for accomplishing it. Instead, vague instructions 
are used by human drivers, such as “adjust speed 
to conditions” or “exercise caution”. These 
instructions generally require a significant amount 
of additional knowledge to interpret correctly. 
That knowledge is often called “common sense” 
and is usually completely left out of human 
conversations. It proved extremely difficult to 
endow computers with such common sense, as 
illustrated above by Watson’s shortcomings. In 

It’s ok as long as there is just competition” as a Daily 
Double in the category ‘Legal “E”s’. Over the two-
day match, Watson responded correctly 66 times, 
including in the case of both the aforementioned 
cues, and incorrectly nine times. 
Watson’s shortcomings and quirks during the 
performance were even more revealing. It could 
neither understand nor produce human speech. 
Indeed, in a telling showbiz compromise, Watson 
received the answers electronically as the human 
contestants heard it from the host and responded 
in writing. Watson, unlike its human competitors, 
never wagered in round numbers. Its final Jeopardy! 
wagers for the two matches were $947 and $17,973, 
respectively. It had evident trouble with some 
categories, especially those with short clues 
containing only a few words. It did not even buzz 
in for two whole categories, ‘Actors who direct’ 
and ‘One buck or less’. In a delicious bit of irony, 
it failed to come up with a single correct response 
in the category ‘Also on Your Computer Keys’. In 
the final Jeopardy! round on the first day, the 
category was ‘U.S. Cities’, and the clue was “Its 
largest airport is named for a World War II Hero; 
its second largest for a World War II Battle”. The 
correct answer was Chicago, but Watson famously 
came up with “What is Toronto?????”. What these 
shortcomings reveal is that the human “common 
sense” that we take for granted is still elusive for 
Watson despite its otherwise impressive performance. 
There are other computing systems that are 
specialized to perform one or another of a highly 
skilled, real-world task that was once thought to 
be the exclusive domain of trained human experts. 
Most of us are familiar with Siri, Cortana, or 
Alexa, intelligent personal assistant apps that can 
understand and produce human speech. Self-driving 
cars and face recognition technology are two other 
well-known computing applications. What all of these 
computing systems have in common, and what 
makes them successful in complex, real-world 
tasks is a new style of computing called ML [2-4]. 
Several factors enabled this recent progress. First, 
ML algorithms matured and have become better 
understood. Second, enormous computational 
resources have become readily available. Finally, 
a combination of widely available sensors (such 
as cameras) and transmission technology, which 
allow for capturing, collecting and storing large 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In the above “car driving” example, these 
components would correspond to the following: 
•  The “agent” would correspond to the driver. 
•  The “outside world” would include the car being 

driven, as well as other cars on the road, the road 
itself, and any relevant surroundings (for example, 
air clarity, position of the sun, cloud cover, 
potential obstacles on the pavement, and so on). 

•  The “observations” the agent can perform would 
include looking at the car’s dashboard, listening 
to the engine noise, and noticing vestibular 
sensations, as well as visually observing the 
world outside the car windows and listening to 
road sounds. 

•  The actions would correspond to any control 
inputs for the car, such as pressing pedals, 
turning the steering wheel, operating signals or 
other accessories, etc. 

Other examples of tasks well-suited for the RL 
framework include other daily tasks such as washing 
hands, cooking a meal or loading the dishwasher, 
as well as highly skilled and specialized tasks such 
as performing a surgery. Potential applications to 
neurology therefore range from assisting patients 
with their daily life to assisting surgeons with 
complex procedures. 
A wide range of approaches can be used to 
approach RL tasks. One of the earliest approaches 
involved providing “rewards” to the agent after a 
favorable state was reached (for example, when 
the desired destination was reached in a car or when 
a meal was successfully cooked). RL reflects the 
similarity of this methodology to classical operant 
conditioning. However, multiple other methods 
have been used as well, such as “imitation learning” 
(when the agent observes and tries to mimic the 
behavior of another agent, such as a skilled human). 

3.2. Supervised learning 
Supervised learning (SL) describes a class of 
simplified decision tasks that involve producing a 
label for a given (query) data point. A typical 
example is looking at a photograph of an animal 
and determining whether that animal is a zebra or 
a donkey. Depending on the label type, SL tasks 
can be further divided into several categories:  
•  When the label only has two possible values 

(such as “0” and “1” or “zebra” and “donkey”), 
the task is called “binary classification”.  

addition, even in the presence of common sense 
knowledge, the previously stated instructions are 
themselves ambiguous (for example, it is easy for 
two reasonable people to disagree as to whether a 
particular speed is appropriate for the current 
conditions). 
ML studies algorithms that attempt to solve such 
vague, ambiguously specified tasks. Due to a crisp, 
well-defined solution strategy being unavailable 
for such tasks, it has turned out to be extremely 
difficult to explicitly program computers to perform 
such tasks. Instead, ML algorithms rely on observing 
a few “training examples” of the task in question, 
and learning to generalize from these examples in 
a meaningful manner based on feedback about 
their performance. A familiar example of ML is 
where a virtual assistant (VA) like Siri or Cortana 
learns what we sound like by making us speak a 
few times. ML reflects the similarity of the human 
learning process by performing a task and learning 
from examples (although the underlying 
mechanisms are often different). 
 
3. Types of ML tasks 
ML tasks, as well as approaches to solving them, 
are usually subdivided into reinforcement learning, 
supervised learning, and unsupervised learning (for 
more detailed reviews, see [2-9]). These subdivisions 
are useful for understanding and analyzing the 
field and are described below. However, it should 
be noted that these subdivisions are neither precise 
nor mutually exclusive. In addition, solving practical 
real-world tasks often requires crossing these 
subdivisions. 

3.1. Reinforcement learning 
Reinforcement learning (RL) is the broadest and 
most general category. RL can assist in navigating 
and overcoming everyday problems. RL problems 
consist of the following components: 
•  An “outside world”, whose state is generally 

not known precisely. 
•  An “agent” that can 

◦  Perform observations on the world to obtain 
  information (usually only partial) about its 
  current state, and 

◦ Perform actions that may change both the 
  agent’s and the world’s state. 
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4. Approaches to solving ML tasks 
Although a thorough review of ML techniques is 
beyond the scope of this paper, we will give a few 
examples that illustrate some common themes in ML. 

4.1. Supervised learning 
For simplicity, we will start with SL methods. 
Consider the problem of observing an image and 
classifying (i.e., recognizing) the object in the image 
as either a “zebra” or a “donkey” (see Fig. 2A). 
In the classical SL pipeline, the raw input data is first 
mapped into a feature space by a process called 
“feature extraction”. These features are properties 
of the input images that are easily expressed in 
numerical form and help distinguish between 
categories. For the example task, the presence of 
stripes seems like a reasonable way to distinguish 
between the categories. Therefore, we might 
calculate two features from each image, “number 
of horizontal stripes” and “number of vertical stripes”. 
Each image can now be described by these two 
properties and thus plotted on a 2-dimensional scatter 
plot (Fig. 2B). The location of each point is determined 
by the features, and the symbol used for each point 
represents the category (with the circles representing 
donkeys, and the dashes representing zebras). 
As can be seen, it becomes quite easy to draw a line 
on the scatter plot, such that all circles (corresponding 
to donkeys) are on one side of the line, and all 
dashes (corresponding to zebras) are on the other. 
This separating line (called “separating hyperplane” 
in higher dimensions) can be used to classify new 
images into the two categories. For example, the 
image represented by the cross with a question 
mark in Fig. 2B is likely of a donkey because it is 
on the “circle” side of the separating line. 
To summarize, SL is subdivided into two phases. 
In the first phase (actual “learning”), a large labeled 
dataset is used, called a “training set”. Features are 
extracted from the data points (usually more than 
two and often, in hundreds or thousands). A 
separating hyperplane is identified and recorded. 
Often, this process is very computationally intensive 
and requires specialized server hardware. This 
separating hyperplane is the output of the learning 
phase. In general, the output of the learning phase 
is called a “classifier” because it can be used to 
classify new data points into categories. 
 

•  When more than two values are possible (for 
example, if any of 100 types of animals need 
to be identified in a photograph), the task is 
called “multi-class classification”.  

•  When the label is a continuous value rather 
than one of a discrete set of possibilities, the 
task is called “regression”. An example of a 
regression task is estimating the distance to an 
object in the photograph. 

•  When the label is a complex object (such as a 
graph), the task is called “structured learning” 
or “structured prediction”. 

Technically, all of these tasks could be considered 
special cases of the RL paradigm described above. 
For example, to cast the “zebra vs. donkey” task 
in RL framework, we could consider the photograph 
to be “the world”, any information extracted from 
the photograph to be the agent’s observations, and 
the decision to classify the photograph as “zebra” 
or “donkey” to be the agent’s actions. Therefore, 
in principle, the techniques of RL could be applied to 
solve SL problems as well. However, in practice, 
more specialized techniques are usually used. 
Many applications of SL could be envisioned for 
neurology. For example, when doctors assess a 
patient at a high level, they perform the binary 
classification task of labeling the patient as 
“healthy” or “requiring follow-up”. Also, when 
making a specific diagnosis, this could be classified 
as a multi-class classification problem, whereas 
when writing a radiology report, it would be 
classified as a structured prediction problem. 

3.3. Unsupervised learning 
In unsupervised learning (UL), the task is to 
somehow “describe” a collection of data in the 
absence of any labels. A familiar example of an 
UL task is clustering, i.e. grouping together data 
points that are “similar”. Another relevant example 
is “anomaly detection”. In this task, the goal is to infer 
a normalcy model from the examples and identify 
those examples that deviate most from “normal”. 
Applications to neurology include organizing large 
amounts of data, such as clustering a long-term EEG 
recording to reveal several major modes of brain 
activity or automated monitoring of a video feed 
from an elderly patient’s home to detect a change in 
behavior that could indicate an episode of a disease. 
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their own problems and limitations. In Fig. 3B, 
the categories are only partially separated. This 
situation is analogous to that arising sometimes in 
medical diagnosis: some cases (those above the 
dashed line in Fig. 3B) clearly belong to one 
category, while many other cases are ambiguous 
and necessitate further testing. In the context of 
SL, the analogue of “further tests” would be to 
calculate additional features and use them to 
achieve better separation. 
 
5. Importance of choosing the right features 
As the figures above illustrate, designing appropriate 
features is one of the most important tasks in ML. 
Generally, the operator tries to satisfy two goals: 
(i) preserve as much information from the original 
data as possible, and (ii) express it in a manner 
that makes separation easy (see Figs. 2-4). 
Again, two extremes are possible. At one extreme, 
no actual design takes place and the data is fed to 
the algorithm as is. For example, in the image 
classification task above one could simply use the 
color of each pixel as the feature set (for a 100 x 
100 pixel image with 3 color channels per pixel, 
this would create 30,000 features). While, on the 
whole, this feature set contains all the information 
present in the original image, the amount of 
information in each individual feature is so small 
that many algorithms would be unable to make 
use of it (see Fig. 3A). 
At the other extreme, a small set of features could be 
designed that makes the task trivial (see Fig. 2B). 
While desirable, this is usually difficult to achieve 
in practice. The reason is that it is often non-obvious 
 

  
 
 
 
 
 
 
 
 
 
 
 
In the second phase, what the classifier learned 
during the first phase is used to assign putative 
category labels to new, unlabeled data points. To 
accomplish this, the same set of features is 
calculated for each new data point. The classifier 
then determines which side of the separating 
hyperplane the data point belongs. Compared with 
learning, this process is usually much less 
computation-intensive; often, lightweight devices 
such as cell phones or cameras can run classifiers 
(although usually not learn them). 
The accuracy of the final classifier depends on 
how well-separated the categories of interest are 
in the feature space. In Fig. 2B, where the categories 
are well-separated, the separating line can be 
expected to produce good results. The reason for 
this fortunate separation is a good choice of features, 
guided by the operator’s intuition about what 
properties are likely to help distinguish the categories. 
When a poor set of features is used, the accuracy 
may be expected to drop significantly. This is 
illustrated in Fig. 2C where we have used “area” 
and “circumference” as features to describe object 
shape (rather than presence of stripes to describe 
their texture). As can be seen, the different symbols 
(corresponding to different animals) are completely 
mixed up, making separation impossible. 
Figs. 2B and 2C show two extremes (complete 
separation vs. no separation). Several intermediate 
configurations often occur in practice as well, 
illustrated schematically in Fig. 3. In Fig. 3A, the 
categories are still separable, but not by a straight 
line, necessitating a different learning algorithm. 
While such algorithms are available, they come with 
 

Fig. 2. The problem of classifying objects: An illustrative example. In this and the subsequent figures, the 
circles denote donkeys, while the dashes denote zebras. See text for details. 
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These DL approaches were inspired by early studies 
of the brain function. The building blocks of a DL 
machine are called “neurons”, and they simulate a 
few basic properties of biological neurons. This 
includes the ability to integrate inputs from a few 
simulated “synapses” and, under the right conditions, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
even to human algorithm developers what features 
are useful for distinguishing two given categories 
(for example, explaining how you would distinguish 
between voices of several close friends). This makes 
detailed feature design time-consuming and expensive. 
Another issue that complicates developing SL 
algorithms is that a large number of features is 
often necessary (hundreds, thousands, or more). 
With only two features, it was easy to visualize 
the task, determine what went wrong (see Figs. 2 
and 3), and take the necessary steps to fix the issue. 
In higher dimensions, visualizing data is extremely 
difficult, and many of our intuitions (gained from 
familiarity with 2D and 3D spaces) fail completely 
in higher dimensions. For example, points in 
higher-dimensional spaces are generally very 
sparse, making it harder to generalize (see Fig. 4 
for illustration). Thus, this high dimensionality 
makes diagnosing and solving problems difficult. 
 
6. Deep learning 
Many recent success stories of ML involve a family 
of approaches called “deep learning” (DL). For 
example, a DL machine recently beat the world 
champion at the game of Go [10], a highly significant 
achievement that remained out of reach for the 
past 50 years. 

Fig. 3. The choice of features may result in a variety of configurations of data points in the feature 
space. Some of these configurations may present additional problems or challenges for the learning 
algorithm. See text for details. 

Fig. 4. It is difficult to select the appropriate classifier 
in a sparsely populated space. While each of the three 
dashed lines above separates the circles from the dashes, it 
is difficult to determine which one will generalize best 
to additional data. See text for details. 
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are exactly alike, nor is the same patient exactly 
the same at different times. Clinical decision-making 
at every level involves sifting through a large amount 
of information of varying degrees of relevance to 
the case at hand. 
One of the obvious ML applications useful to 
memory is to help cope with the so-called ‘big data’ 
problems. For instance, one specific application of 
IBM Watson at the Memorial Sloan Kettering 
Cancer Center in New York City is to sift through 
vast (and constantly enlarging) clinical research 
literature in lung cancer care to find best treatment 
options for a given cancer patient, based on the 
individual patient’s clinical profile [12]. Another 
comparable application of Watson scours the 
research literature to help identify RNA-binding 
proteins (RBPs) altered in amyotrophic lateral 
sclerosis (ALS) [13] (also see [14-17]). 
A different set of ML applications involve the 
processing of medical imaging and image analysis 
[18]. For obvious reasons, such applications are 
increasingly prevalent in diagnostic radiology and 
pathology [19, 20]. 
 
9. Some illustrative applications of ML specific 
to neurology  

9.1. Treatment of paralysis: “Mind reading” 
machines 
Fig. 5 schematically illustrates an actual case in 
which a brain-machine interface (BMI) helps a 
quadriplegic patient move her arm just by imagining 
moving the arm. Briefly, a 96-channel microelectrode 
array was surgically implanted near the ‘hand notch’ 
gyral region of the left primary motor cortex of a 
24 year-old male patient. The array continuously 
reads and transmits the neuronal activity data to a 
relatively small external data processing module 
running ML implementations (see [21] for details). 
The module converted the motor planning data 
collected from the neurons into motor impulses 
usable by the muscles of the forearm in real terms. 
The motor impulses were conveyed to the patient’s 
right forearm muscles through a custom built 
high-resolution sleeve that stimulated the relevant 
muscles. Using this system, the patient was able 
to make specific, planned hand movements such 
as grasping, manipulating, and releasing objects 
with his hand just by thinking about performing 
the action. 
 

to simulate “firing” by outputting appropriate signal 
into outgoing connections. Many (millions or 
even billions) of these units are combined into an 
artificial neural network, which is then trained to 
perform the necessary task. Just like with biological 
brains, artificial neural networks are extremely 
flexible and can be applied to a broad range of SL, 
UL, and RL problems. 
In DL, the artificial neural network is arranged in 
layers. These layers can be thought of as similar 
to the hierarchy of layers in biological brains that 
effect “feed-forward” processing (for example, in 
the visual cortex). Akin to their biological counterparts, 
the layers of the artificial neural network enable it 
to learn a hierarchy of increasingly complex features. 
This allows a deep network to take raw data (for 
example, individual image pixels) as input and 
learn to represent it in a highly sophisticated manner 
automatically, without the need for explicit feature 
design by a human operator. Thus, to some extent, 
deep networks are capable of automated feature 
design. This significantly alleviates some of the 
feature design problems mentioned above and 
explains much of the recent success of DL. For a 
further review of DL, see [8,11]. 
 
7. Explainability 
As ML is applied to increasingly consequential 
real-world problems, a significant issue (dubbed 
“explainability”) is making the behavior of these 
complex machines understandable to their human 
operators or collaborators. Most viewers of Jeopardy! 
do not have an intuitive understanding of why 
Watson worked well on some questions and poorly 
on others, but this lack of understanding made the 
experience even more entertaining. Yet if similar 
technology were to be applied, for example, to 
automated radiogram screening, understanding the 
failure modes of the system would be critical, as 
any missed detections would potentially endanger 
human lives. Thus, it is important for ML systems 
to perform not only with high accuracy, but also 
in a manner which their human operators can 
readily and intuitively grasp and predict. This is a 
current area of active research in ML. 
 
8. Applications to medical decision-making 
In a real sense, clinical problems represent a 
microcosm of real-world problems. No two patients 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Machine learning and neurology 

Multiple previous studies using positron emission 
tomography (PET) or arterial spin labeling (ASL) 
have found localized cerebral hypoperfusion in 
patients with Alzheimer’s disease (AD) compared 
to control subjects. Patients with mild cognitive 
impairment (MCI) also show hypoperfusion, but 
at levels intermediate between AD patients and 
control subjects. Obviously, it would be clinically 
valuable if perfusion levels could be used as a 
biomarker for the early diagnosis of AD and for 
prognosis for patients with early AD diagnosis. 
On the other hand, how can such data on a group 
biomarker help in making clinical decisions about 
a given individual patient? Note, incidentally, that 
this is typical of the quandary faced by all 
clinicians in evidence-based medicine. 
Colij et al. [29] used ML methods to compute 
discrimination maps that can help in multiple 
binary clinical decisions. For instance, they showed 
that perfusion levels in the bilateral parietal lobe 
and hippocampus, indicated by the colored regions 
in Fig. 6A, can differentiate between patients with 
AD vs. patients with subjective cognitive decline 
(SCD) with 89% accuracy (area under the receiver 
operating characteristic curve, 0.93). Even more 
importantly, the weighting of the various brain 
voxels in these regions, indicated by the color-
coding in Fig. 6, can be used as a tool to make 
diagnostic decisions about a given individual patient. 
Suppose the neurologist must decide whether a 
given individual patient must be diagnosed with 
AD or SCD. If the measured perfusion levels of 
the given patient, appropriately weighted by the 
colored voxels in Fig. 6A, exceed a predetermined 
criterion value, then the patient can be ‘classified’ 
as an AD patient with 89% accuracy. Otherwise, 
the patient can be placed in the SCD category. 
Discrimination maps for making related binary 
decisions are shown in Figs. 6B and 6C. 
In the above case, the neurological markers are the 
structural changes within individual brain regions. 
Since brain regions are extensively interconnected 
in the healthy brain, changes within regions can be 
expected to cause, or be caused, by connectivity 
across brain regions. There is a vast amount of 
group data that demonstrate the changes in brain 
connectivity patterns in various neurological 
conditions (for reviews, see [30-32]). Once again, 
tools had been hitherto lacking to help translate 
such group data to the clinical care of individual 
patients, in part because of the familiar problem of
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Related advances have been made in other cases 
using comparable ML setups. For instance, human 
patients, as well as monkeys, have been able to 
move robotic arms by similarly planning the 
corresponding volitional limb movements [22-24]. 
Recently, a similar system helped a paralyzed man 
to use a mind-controlled robotic arm to haptically 
feel objects [25, 26]. In this case, the microelectrode 
arrays from the motor cortex gathered the motor 
planning data necessary to control the robotic arm, 
while a second array of stimulating electrodes 
delivered the haptic information from the robot’s 
fingers to the patient’s somatosensory cortex. 

9.2. Applications to evidence-based medicine 
In the neurological context, a discrimination map 
typically refers to a map of the brain created using 
ML methods (for reviews, see [27, 28]). It is a 
classification tool that can be consulted to distinguish, 
or discriminate, between two or more patient 
populations. The intended use of a discrimination 
map is illustrated by a recent neuroradiological 
study by Colij et al. [29] (see Fig. 6). 

Fig. 5. ‘Mind reading’ machines. This figure schematically 
illustrates how a BMI helps an actual quadriplegic 
patient move his arm just by thinking about moving it. 
See text for details. 
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Note that the ML applications in most of these 
instances are compact enough that they can be run 
on any standard laptop or tablet [28, 34, 35]. In the 
aforementioned study [29], the application ‘learned’ 
from a few dozen patients from each category which 
brain regions have the greatest diagnostic value in 
a given binary diagnostic task, and the optimal 
weighting of the individual voxels in diagnostically 
valuable regions. This helps highlight the fact that 
even such small-scale ML applications, if and when 
approved by the Food and Drug Administration 
(FDA), can be of substantial clinical assistance to 
the neurologist. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

multivariate data with substantial intra- and inter-
patient variability along each variable. ML tools 
are ideally suited to aid optimal clinical decision-
making when the evidence is ‘messy’ in this fashion. 
For instance, recent studies have indicated that in 
the case of Parkinson’s Disease (PD), ML methods 
can use group data on resting state functional 
connectivity data to make personalized predictions 
about the progression of motor and non-motor 
aspects of the disease, and the effectiveness of 
various interventions such as l-DOPA treatment, 
exercise therapy, or deep brain stimulation (DBS) 
(for a recent review, see [33]). 

 
Fig. 6. Discrimination maps. The colored regions represent brain voxels, the perfusion levels of 
which can be diagnostic in various AD-related conditions. The weights assigned to each relevant 
voxel is color-coded according to the color bar on right. Each panel denotes regions diagnostic in 
one pairwise diagnostic decision. (A) AD versus SCD. (B) AD versus MCI. (C) MCI versus 
SCD. See text for details. Reproduced from Collij, L.E., Heeman, F., Kuijer, J. P., Ossenkoppele, 
R., Benedictus, M. R., Möller, C., Verfaillie, S. C., Sanz-Arigita, E. J., van Berckel, B. N., van 
der Flier, W. M., Scheltens, P., Barkhof, F. and Wink, A. M. 2016, Radiology, 281, 865 with 
permission from Radiological Society of North America.  
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

‘state’ of the relevant neuronal ensemble from the 
neurophysiological signal, and continually adjust 
the stimulation as needed ‘on the fly’ (for reviews, 
see [46, 47]). 

9.6. Visual prostheses 
Multiple prostheses are currently approved by the 
FDA to help restore visual function in visually 
impaired patients. However, all of these devices 
are designed to address visual impairment at the 
level of the eye. No devices addressing purely 
cortical blindness have been approved to date, 
self-evidently because, as complex as the eye is, 
the brain is an infinitely more complex organ, and 
creating effective prostheses clearly await a 
synergistic effort from neurological, surgical, and 
ML experts. 
Some of the visual prostheses are small integrated 
circuit chips that are surgically implanted in the 
retina (for reviews, see [48-52]). These integrated 
circuits (ICs) have built-in sensors that sense the 
light, processors to convert the light signal to 
electrical signals, and electrodes to convey the 
signal to the downstream neurons. The processors 
mimic the retinal processing through fairly simple 
ML algorithms implemented by the IC [52]. New 
models also feature output verification and wireless 
technology for closed-loop systems [50, 53]. 
In some cases, e.g., when the fibers of the optic 
nerve are not sufficiently healthy, it is advisable to 
bypass the oculothalamocortical pathway altogether, 
and to convey the visual signal directly to the brain. 
Such devices feature an external video camera. 
The signals from the camera are converted to 
brain-compatible electrical signals using smart 
(think ML-based) processing devices, and are 
conveyed to the brain through a small (typically 
<10 mm2) microelectrode array (see Fig. 7A; also 
see [54]), typically implanted in the foveal or 
parafoveal representation of the primary visual 
cortex. Current iterations of such devices can restore 
enough of visual function to allow the patient to 
carry out many everyday visual tasks, such as 
sorting high-contrast socks. 

9.7. Visual prostheses that piggyback on other 
sensory modalities 
It is important to note that visual ‘prostheses’ do 
not necessarily entail stimulating electrodes surgically 
implanted in the brain. One can do an end-run 
 

9.3. Assistive technologies 
The speech-generating device used by the 
Cambridge physicist Stephen Hawking is perhaps 
one of the best known smart assistive technologies 
[36]. Hawking operated this device using a single 
cheek muscle. Such devices can be operated by 
the patient using just about any spared motor 
functionality, including eye movements. This provides 
a straightforward way of customizing assistive 
technology for the individual patient. Such smart 
technologies are versatile tools that can perform 
functions that neither the patient nor any caregiver 
can easily perform [37-39]. 

9.4. Computer-assisted neurological rehabilitation 
and assisted living 
Robots or ‘cyber-physical systems’ have made their 
presence felt in assisted living. In addition to fairly 
simple mini robot vacuums, there are robots that 
can act like phone caddies for patients in assisted 
living conditions, whereby they find the patient 
and bring the phone to him or her when someone 
calls [40]. Robots can also assist in neurological 
rehabilitation through therapeutic routines that can 
be custom-programmed to suit the rehabilitative 
needs of individual patients [41]. 

9.5. Closed loop neurostimulation 
DBS therapy has been shown to be effective for 
the treatment of essential tremor, dystonia, and 
PD [35, 42-45]. Currently approved systems are 
‘open-loop’, in that the stimulating signal is 
generated in the device and delivered to the brain, 
and that the device itself receives no information 
whatsoever from the brain. Recently, ‘closed loop’ 
stimulation systems (implantable pulse generator, 
or IPG) have been developed that can sense the 
relevant neurophysiological signals and can 
dynamically adjust the stimulation parameters. ML 
algorithms carry out the computations that underlie 
such adaptive brain-computer interfaces (BCIs). 
In the case of PD, for instance, the 
neurophysiological signal monitored by the IPGs 
are the local field potentials (LFPs) of the basal 
ganglia measured using surgically implanted, 
high-impedance electrodes. What the IPGs do 
with this signal depends on the desired therapeutic 
goal that the neurostimulation is intended to maintain 
or restore for the given patient. Given a therapeutic 
endpoint, ML algorithms continuously decode the 
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theorem [56, 57]. The theorem considers what 
happens when the set of problems to be solved is 
not a priori circumscribed. The theorem’s conclusion 
is that under these conditions, any learning algorithm 
is as good as any other learning algorithm (including 
random guessing). In other words, if someone took 
the most modern and sophisticated learning algorithm 
(such as DL), tested it on all conceivable learning 
problems, and counted the number of successes, 
that number would be no higher than the success 
count of the algorithm that does not learn anything 
and outputs a random guess each time. 
The theorem initially appears to contradict not only 
the recent successes of ML, but also the ability of 
biological organisms to learn and adapt. To reconcile 
the two, recall that in real life, both machine and 
biological learning systems are not dealing with 
unconstrained, arbitrary problems. For example, all 
practical visual classification problems share the 
common property called smoothness: nearby pixels 
in the image are likely to come from the same object 
and have similar color, depth, and surface normal. 
Existing visual recognition algorithms all depend on 
this property to achieve better-than-chance success 
rates. Consequently, those algorithms will perform at 
worse-than-chance levels on other visual recognition 
problems (for example, those that do not have 
smoothness), but that is not an issue since these 
problems do not seem to appear in practical real-
world tasks. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
around the invasive surgical procedures and, in 
fact, bypass the early visual processing pathways 
altogether by using other sensory systems to convey 
the visual signal to the brain. One such FDA-approved 
device, BrainPort, gathers the visual signal through 
a small, wearable video camera which processes 
the signal using a small, portable (usually hand-
held), smart processor, and conveys the visual signal 
through a small, removable, electrical transducer 
worn on the tongue like a lollipop that delivers the 
visual signal as corresponding visual impulses to 
the tongue [55] (also see Fig. 7B). Use of this 
device takes a certain sensory learning, or ‘getting 
used to’ on the part of the visually impaired patient to 
perceive the visual world in this fashion. Yet 
patients can learn this easily and well enough to 
do most everyday tasks, and even some arduous 
tasks like rock climbing. The primary reason why 
this rerouting works is because, with the possible 
exception of olfaction, the cortical anatomical 
substrates of the various senses are fundamentally 
similar. Therefore, such cross-modal therapeutic 
solutions represent a potentially huge growth area 
for ML-based rehabilitative solutions. 
 
10. Future prospects 
To understand the limitations and future prospects 
of ML, it is instructive to examine a fundamental 
theorem colloquially known as the “No Free Lunch” 
 

Fig. 7. Some visual prostheses. (A) Implantable stimulating microelectrode arrays that convey the neurally encoded 
visual signal to cortical neuronal ensembles, such as the primary visual cortex or somatosensory cortex. 
(B) Seeing through one’s tongue with the BrainPort rehabilitative device. The visually impaired patient wears a pair 
of sunglasses fitted with a video camera. The video signal from the camera is processed in a small, hand-held device 
and is converted to electronic signals conveyed to the tongue through a removable transducer worn on the tongue by 
the patient like a lollipop. After some practice, the patient can perceive the visual world with enough detail to do 
most everyday tasks. This modus operandi of this device is sometimes described as ‘tasking the light’ [55]. However, 
this is a bit of misnomer, because the electrical signals in questions are taken up by the tactile sensors, not the taste 
buds, in the tongue. Picture in Panel A, courtesy of UPMC/Pitt Health Sciences, used with permission [26]. Picture 
in Panel B, courtesy of Wicab; used with permission [66]. 
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Several conclusions can be made from the preceding 
discussion. First, despite its strong mathematical 
underpinnings, ML is an empirical discipline. 
Successes occur when an algorithm can be tuned 
to a family of related real-world problems; since 
fundamentally no algorithm is better than any other, 
such successes have to be evaluated empirically. 
Second, algorithms are unlikely to be universal; 
each new family of problems will require a 
carefully selected and specifically tuned algorithm 
for its solution. 
In addition to the fundamental limitations of ML 
described above, some more pragmatic, empirical, 
and potentially temporary limitations can be 
outlined. Perhaps the most obvious is that 
computers, even endowed with ML technology, 
still lack even basic human “common sense”. One 
example is that a computer trained on the binary 
classification task of distinguishing between zebras 
and donkeys will force either a “zebra” or a “donkey” 
label on every image, even if nothing in the image 
resembles an animal in any way. A human 
trained on a similar task would naturally label 
such images as “neither”, but a computer would 
have to be trained explicitly for that expression. 
Another example is that a human trained on a task 
invariably learns much more than strictly necessary 
to accomplish the task; their learning is considerably 
“deep”. As a result, humans will generalize much 
more readily to new conditions or new tasks. In 
computer algorithms, even those considered DL, 
the learning is still not nearly as deep. Continuing 
the animals example, a computer that learned to 
distinguish zebras from donkeys (see Fig. 2) 
would be at a total loss if it had to determine the 
approximate age or gender of the animals. In 
contrast, humans would adapt much faster, even if 
they were not warned about these additional tasks. 
Several additional examples showing the lack of 
common sense have been outlined in the Introduction. 
There seem to be no fundamental limitations that 
prevent an artificial system from acquiring and 
using “common sense” similar to humans. However, 
accomplishing this in practice so far has proved 
difficult. Until this problem is overcome, the lack 
of common sense will continue to put certain 
limitations on the applications of ML. First, the 
tasks that computers solve will be somewhat 
limited in scope. One might have imagined that a 
 

virtual assistant that is able to order pizza from 
Domino’s would also be able to order one from 
Pizza Hut or to book a ride on Uber. In reality, each 
of these tasks still have to be programmed separately, 
and it is likely to be a while before a virtual assistant 
can truly display some general proficiency with 
ordering things online. Second, adoption is likely 
to be fastest for extremely structured scenarios 
(for example, the earliest adopters of robotics were 
factories that could exercise extremely precise 
control over placement of machinery, spare parts, 
and personnel). Outside of these controlled 
environments, one is much more likely to see ML 
used in tasks that “assist” a human operator, such 
that errors are not critical. A familiar example is 
automatic face detection on most modern cameras 
and cell phones: it is quite convenient when it 
works well, but any errors are easy to circumvent. 
Critical tasks in uncontrolled environments (such 
as performing a surgery, given that every human’s 
anatomy is slightly different) are unlikely to be 
performed completely autonomously for some 
time. Third, while we have come to expect perfect 
performance from traditional automation, computers 
that utilize ML are likely to have “quirks” or 
errors in their behavior. As their human users, we 
will have to learn not to expect perfection, but 
rather anticipate and work around these quirks 
(much like when working with fellow human beings). 
One of the goals of research on explainability 
(outlined above) is to make these quirks easier to 
understand and predict for human beings. 
Biological systems provide an “existence proof” 
that successful learning is possible for a wide 
variety of problems. In principle, the field of ML 
can make some headway, as it has so many times 
in the past, by studying and mimicking these 
biological systems. Unfortunately, significant gaps 
exist in our understanding of biological learning 
systems as well [58-60]. 
 
11. What factors are likely to facilitate or 
hinder application of machine learning to 
neurology?  
Several factors facilitate the development and 
adoption of ML algorithms for a given domain. 
One factor is the availability of good features (or a 
method to learn them). For example, detecting the 
presence and severity of tremor in PD is likely to 
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be relatively easy given that it is a simple periodic 
motion readily amenable to Fourier transform 
analysis. In contrast, detecting presence and severity 
of coprolalia (involuntary swearing) in Tourette 
syndrome is likely to be much harder because it is 
difficult to characterize precisely the contexts in 
which swearing is socially acceptable (see [61]). 
A second factor to consider is the ability to limit 
the scope of the problem or to control the domain. 
For example, access control based on facial 
recognition is a relatively “easy” problem. It is 
very precisely defined (either the face belongs to 
one of a few authorized users or it does not), and 
the users are cooperative (the user wishing to gain 
access will voluntarily pose in frontal view, 
remove sunglasses, or perform other necessary 
steps to reduce variability and simplify the task 
for the computer). In contrast, screening for 
“suspicious behavior” at an airport checkpoint is 
much more complicated. The passengers are unlikely 
to pose for cameras, any relevant facial expressions 
(such as fear or anger) will be fleeting, and those 
who have malicious intent will try to mask their 
expressions, behaviors, and intent. In addition, the 
task is extremely open-ended as the goal is not to 
detect any specific facial expression, but rather to 
evaluate the passenger’s mental state and its 
appropriateness for the current context. Availability 
of good-quality, large datasets is an important 
factor for consideration. Facial recognition and 
recognition of handwritten digits are some of the 
most studied problems in ML because large 
datasets were collected and became widely shared 
several decades ago. In contrast, automated 
interpretation of brain X-ray images is likely to 
face many more hurdles. Collecting radiograms is 
much harder than collecting photographs or 
handwriting samples because X-ray images are 
cumbersome to use and X-rays pose non-negligible 
risks for healthy subjects. In addition, sharing 
such medical images has a much higher regulatory 
burden. Also, low baseline human performance 
should be considered. For example, humans have 
difficulties when dealing with very large amounts 
of certain types of data. In those cases, even 
imperfect performance from a ML algorithm can 
prove extremely helpful. In medical fields such as 
cancer therapy, ML is helping in making advances 
that would not have been possible without ML, as 
discussed above. 

12. Regulatory hurdles
ML applications face, appropriately enough, steep 
regulatory hurdles worldwide. In the United States, 
relatively few ML applications have been approved 
for clinical use by the FDA. The FDA classifies 
devices that carry out clinical interpretation as 
Class III devices and, fittingly, requires them to 
meet extremely high standards. Since it is very 
difficult and time-consuming to meet these standards, 
this alone is enough to ensure that ML tools will 
not be replacing the neurologist anytime soon, if 
ever. Applications based on ML are much more 
likely to appear in the clinic as Class II devices, or 
devices that help take a measurement. It is much 
easier and faster for developers to develop, test, 
and validate Class II devices, and to get them 
approved by the FDA. 
 
13. Can ML ever replace the neurologist? 
ML is unlikely to replace the highly trained human 
professional in safety-critical fields such as medicine, 
piloting passenger vehicles, aircraft, etc., for the 
foreseeable future. Even if it were ever technically 
possible for a smart machine to match or exceed a 
skilled human professional, the market is likely to 
be exceedingly resistant to such a change. This is 
because such professionals provide more than just 
highly skilled services: they provide a sense of 
security and beneficence that we simply cannot 
get from machines. Many of us would not entrust our 
lives to machines flying an airplane by themselves 
or robots autonomously performing a heart transplant 
surgery. Human preference, after all, is the main 
reason why even some of the mundane predictions 
by futurists like Arthur Clarke and Ray Kurzweil 
about life in 2010 [62-65] have not come true. 
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